These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34546757)

  • 1. Quantitative Account of the Bonding Properties of a Rubredoxin Model Complex [Fe(SCH
    Tzeli D; Raugei S; Xantheas SS
    J Chem Theory Comput; 2021 Oct; 17(10):6080-6091. PubMed ID: 34546757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-Forbidden Transitions between Electronic States in the Active Site of Rubredoxin.
    dePolo GE; Kaliakin DS; Varganov SA
    J Phys Chem A; 2016 Nov; 120(43):8691-8698. PubMed ID: 27739682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum-Sulfur Bond: Electronic Structure of Low-Lying States of MoS.
    Tzeli D; Karapetsas I; Merriles DM; Ewigleben JC; Morse MD
    J Phys Chem A; 2022 Feb; 126(7):1168-1181. PubMed ID: 35147425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does gold behaves as hydrogen? A joint theoretical and experimental study.
    Qin Z; Zhang J; Wang C; Wang L; Tang Z
    Nanoscale Adv; 2020 Feb; 2(2):844-850. PubMed ID: 36133220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+).
    Lau KC; Chang YC; Lam CS; Ng CY
    J Phys Chem A; 2009 Dec; 113(52):14321-8. PubMed ID: 19775110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterolytic bond dissociation in water: why is it so easy for C4H9Cl but not for C3H9SiCl?
    Su P; Song L; Wu W; Shaik S; Hiberty PC
    J Phys Chem A; 2008 Apr; 112(13):2988-97. PubMed ID: 18331015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectron spectroscopy and density functional theory studies of (FeS)
    Yin S; Bernstein ER
    Phys Chem Chem Phys; 2017 Dec; 20(1):367-382. PubMed ID: 29210391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray absorption spectroscopy and density functional theory studies of [(H3buea)FeIII-X]n- (X = S2-, O2-, OH-): comparison of bonding and hydrogen bonding in oxo and sulfido complexes.
    Dey A; Hocking RK; Larsen P; Borovik AS; Hodgson KO; Hedman B; Solomon EI
    J Am Chem Soc; 2006 Aug; 128(30):9825-33. PubMed ID: 16866539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical, thermodynamic, spectroscopic, and structural studies of the consequences of one-electron oxidation on the Fe-X bonds in 17- and 18-electron Cp*Fe(dppe)X complexes (X = F, Cl, Br, I, H, CH3).
    Tilset M; Fjeldahl I; Hamon JR; Hamon P; Toupet L; Saillard JY; Costuas K; Haynes A
    J Am Chem Soc; 2001 Oct; 123(41):9984-10000. PubMed ID: 11592877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopy of non-heme iron thiolate complexes: insight into the electronic structure of the low-spin active site of nitrile hydratase.
    Kennepohl P; Neese F; Schweitzer D; Jackson HL; Kovacs JA; Solomon EI
    Inorg Chem; 2005 Mar; 44(6):1826-36. PubMed ID: 15762709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemical investigations and bonding analysis of iron complexes with mixed cyano and carbonyl ligands.
    Loschen C; Frenking G
    Inorg Chem; 2004 Jan; 43(2):778-84. PubMed ID: 14731041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between the geometric and electronic structures and reactivities of [FeNO]7 and [FeO2]8 complexes: a density functional theory study.
    Schenk G; Pau MY; Solomon EI
    J Am Chem Soc; 2004 Jan; 126(2):505-15. PubMed ID: 14719948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-lying quartet electronic states of nitrogen dioxide.
    Bera PP; Yamaguchi Y; Schaefer HF
    J Chem Phys; 2007 Nov; 127(17):174303. PubMed ID: 17994814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal-carbon complexes. A theoretical study.
    Krapp A; Pandey KK; Frenking G
    J Am Chem Soc; 2007 Jun; 129(24):7596-610. PubMed ID: 17530845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the electronic structure and chemical bonding of the "staple" motifs of thiolate gold nanoparticles: Au(SCH3)2- and Au2(SCH3)3-.
    Ning CG; Xiong XG; Wang YL; Li J; Wang LS
    Phys Chem Chem Phys; 2012 Jul; 14(26):9323-9. PubMed ID: 22278407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure investigation and parametrization of biologically relevant iron-sulfur clusters.
    Carvalho AT; Swart M
    J Chem Inf Model; 2014 Feb; 54(2):613-20. PubMed ID: 24460186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural and bonding evolution in cysteine-gold cluster complexes.
    Zhao Y; Zhou F; Zhou H; Su H
    Phys Chem Chem Phys; 2013 Feb; 15(5):1690-8. PubMed ID: 23247849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol-based molecular overlayers adsorbed on C60: role of the end-group and charge state on the stability of the complexes.
    Chavira-Quintero R; Guirado-López RA
    J Chem Phys; 2013 Nov; 139(17):174307. PubMed ID: 24206298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2012 Mar; 134(9):4124-31. PubMed ID: 22309227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of chemical bonding of the ground and low-lying states of Mo
    Depastas T; Androutsopoulos A; Tzeli D
    J Chem Phys; 2022 Aug; 157(5):054302. PubMed ID: 35933218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.