These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34546927)

  • 1. predML-Site: Predicting Multiple Lysine PTM Sites With Optimal Feature Representation and Data Imbalance Minimization.
    Ahmed S; Rahman A; Hasan MAM; Rahman J; Islam MKB; Ahmad S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3624-3634. PubMed ID: 34546927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational identification of multiple lysine PTM sites by analyzing the instance hardness and feature importance.
    Ahmed S; Rahman A; Hasan MAM; Ahmad S; Shovan SM
    Sci Rep; 2021 Sep; 11(1):18882. PubMed ID: 34556767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MLysPRED: graph-based multi-view clustering and multi-dimensional normal distribution resampling techniques to predict multiple lysine sites.
    Zuo Y; Hong Y; Zeng X; Zhang Q; Liu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35953081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iPTM-mLys: identifying multiple lysine PTM sites and their different types.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Bioinformatics; 2016 Oct; 32(20):3116-3123. PubMed ID: 27334473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences.
    Chen L; Chen Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38066710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction.
    López Y; Sharma A; Dehzangi A; Lal SP; Taherzadeh G; Sattar A; Tsunoda T
    BMC Genomics; 2018 Jan; 19(Suppl 1):923. PubMed ID: 29363424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.
    Hasan MM; Yang S; Zhou Y; Mollah MN
    Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pSuc-EDBAM: Predicting lysine succinylation sites in proteins based on ensemble dense blocks and an attention module.
    Jia J; Wu G; Li M; Qiu W
    BMC Bioinformatics; 2022 Oct; 23(1):450. PubMed ID: 36316638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction.
    Dehzangi A; López Y; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A
    J Theor Biol; 2017 Jul; 425():97-102. PubMed ID: 28483566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance.
    Ahmed S; Rahman A; Hasan MAM; Islam MKB; Rahman J; Ahmad S
    PLoS One; 2021; 16(4):e0249396. PubMed ID: 33793659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lysine formylation sites using support vector machine based on the sample selection from majority classes and synthetic minority over-sampling techniques.
    Sohrawordi M; Hossain MA
    Biochimie; 2022 Jan; 192():125-135. PubMed ID: 34627982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Prediction of Protein Epsilon Lysine Acetylation Sites Based on a Feature Selection Method.
    Gao J; Tao XW; Zhao J; Feng YM; Cai YD; Zhang N
    Comb Chem High Throughput Screen; 2017; 20(7):629-637. PubMed ID: 28292250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of lysine HMGylation sites using multiple feature extraction and fuzzy support vector machine.
    Ju Z; Wang SY
    Anal Biochem; 2023 Feb; 663():115032. PubMed ID: 36592921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.