These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 34547154)
1. DcCCD4 catalyzes the degradation of α-carotene and β-carotene to affect carotenoid accumulation and taproot color in carrot. Li T; Deng YJ; Liu JX; Duan AQ; Liu H; Xiong AS Plant J; 2021 Nov; 108(4):1116-1130. PubMed ID: 34547154 [TBL] [Abstract][Full Text] [Related]
2. The influence of the Or and Carotene Hydroxylase genes on carotenoid accumulation in orange carrots [Daucus carota (L.)]. Coe KM; Ellison S; Senalik D; Dawson J; Simon P Theor Appl Genet; 2021 Oct; 134(10):3351-3362. PubMed ID: 34282485 [TBL] [Abstract][Full Text] [Related]
3. Transcript profiling of genes involved in carotenoid biosynthesis among three carrot cultivars with various taproot colors. Wang YH; Li T; Zhang RR; Khadr A; Tian YS; Xu ZS; Xiong AS Protoplasma; 2020 May; 257(3):949-963. PubMed ID: 31982943 [TBL] [Abstract][Full Text] [Related]
4. Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars. Ma J; Xu Z; Tan G; Wang F; Xiong A Acta Biochim Biophys Sin (Shanghai); 2017 Sep; 49(9):817-826. PubMed ID: 28910981 [TBL] [Abstract][Full Text] [Related]
5. Unique chromoplast organisation and carotenoid gene expression in carotenoid-rich carrot callus. Oleszkiewicz T; Klimek-Chodacka M; Milewska-Hendel A; Zubko M; Stróż D; Kurczyńska E; Boba A; Szopa J; Baranski R Planta; 2018 Dec; 248(6):1455-1471. PubMed ID: 30132151 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Ma J; Li J; Xu Z; Wang F; Xiong A Acta Biochim Biophys Sin (Shanghai); 2018 May; 50(5):481-490. PubMed ID: 29617714 [TBL] [Abstract][Full Text] [Related]
7. Formation of norisoprenoid flavor compounds in carrot (Daucus carota L.) roots: characterization of a cyclic-specific carotenoid cleavage dioxygenase 1 gene. Yahyaa M; Bar E; Dubey NK; Meir A; Davidovich-Rikanati R; Hirschberg J; Aly R; Tholl D; Simon PW; Tadmor Y; Lewinsohn E; Ibdah M J Agric Food Chem; 2013 Dec; 61(50):12244-52. PubMed ID: 24289159 [TBL] [Abstract][Full Text] [Related]
8. Plastid diversity and chromoplast biogenesis in differently coloured carrots: role of the DcOR3 Zhang YM; Wu RH; Wang L; Wang YH; Liu H; Xiong AS; Xu ZS Planta; 2022 Oct; 256(6):104. PubMed ID: 36308565 [TBL] [Abstract][Full Text] [Related]
9. Effects of simulated drought stress on carotenoid contents and expression of related genes in carrot taproots. Zhang RR; Wang YH; Li T; Tan GF; Tao JP; Su XJ; Xu ZS; Tian YS; Xiong AS Protoplasma; 2021 Mar; 258(2):379-390. PubMed ID: 33111186 [TBL] [Abstract][Full Text] [Related]
11. Expression of carotenoid biosynthesis genes during carrot root development. Clotault J; Peltier D; Berruyer R; Thomas M; Briard M; Geoffriau E J Exp Bot; 2008; 59(13):3563-73. PubMed ID: 18757491 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of carotenoids in carrot: an underground story comes to light. Rodriguez-Concepcion M; Stange C Arch Biochem Biophys; 2013 Nov; 539(2):110-6. PubMed ID: 23876238 [TBL] [Abstract][Full Text] [Related]
13. Differential role of the two ζ-carotene desaturase paralogs in carrot (Daucus carota): ZDS1 is a functional gene essential for plant development and carotenoid synthesis. Flores-Ortiz C; Alvarez LM; Undurraga A; Arias D; Durán F; Wegener G; Stange C Plant Sci; 2020 Feb; 291():110327. PubMed ID: 31928663 [TBL] [Abstract][Full Text] [Related]
14. Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. Moreno JC; Pizarro L; Fuentes P; Handford M; Cifuentes V; Stange C PLoS One; 2013; 8(3):e58144. PubMed ID: 23555569 [TBL] [Abstract][Full Text] [Related]
15. Exogenous CaCl Zhang J; Zhang K; You W; Ru X; Xu Z; Xu F; Jin P; Zheng Y; Cao S Plant Physiol Biochem; 2024 Jul; 212():108732. PubMed ID: 38761546 [TBL] [Abstract][Full Text] [Related]
16. Lycopene ε-cyclase mediated transition of α-carotene and β-carotene metabolic flow in carrot fleshy root. Wang YH; Zhang YQ; Zhang RR; Zhuang FY; Liu H; Xu ZS; Xiong AS Plant J; 2023 Aug; 115(4):986-1003. PubMed ID: 37158657 [TBL] [Abstract][Full Text] [Related]
17. Fine Mapping, Transcriptome Analysis, and Marker Development for Ellison S; Senalik D; Bostan H; Iorizzo M; Simon P G3 (Bethesda); 2017 Aug; 7(8):2665-2675. PubMed ID: 28663343 [TBL] [Abstract][Full Text] [Related]
18. Broomrape infestation in carrot (Daucus carota): Changes in carotenoid gene expression and carotenoid accumulation in the parasitic weed Phelipanche aegyptiaca and its host. Emran S; Nawade B; Yahyaa M; Abu Nassar J; Tholl D; Eizenberg H; Ibdah M Sci Rep; 2020 Jan; 10(1):324. PubMed ID: 31942014 [TBL] [Abstract][Full Text] [Related]
19. Development and carotenoid synthesis in dark-grown carrot taproots require PHYTOCHROME RAPIDLY REGULATED1. Arias D; Ortega A; González-Calquin C; Quiroz LF; Moreno-Romero J; Martínez-García JF; Stange C Plant Physiol; 2022 Jun; 189(3):1450-1465. PubMed ID: 35266544 [TBL] [Abstract][Full Text] [Related]
20. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. Maass D; Arango J; Wüst F; Beyer P; Welsch R PLoS One; 2009 Jul; 4(7):e6373. PubMed ID: 19636414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]