These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34547277)

  • 1. Red blood cells under flow show maximal ATP release for specific hematocrit.
    Gou Z; Zhang H; Abbasi M; Misbah C
    Biophys J; 2021 Nov; 120(21):4819-4831. PubMed ID: 34547277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP Release by Red Blood Cells under Flow: Model and Simulations.
    Zhang H; Shen Z; Hogan B; Barakat AI; Misbah C
    Biophys J; 2018 Dec; 115(11):2218-2229. PubMed ID: 30447988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into shear stress-induced endothelial signalling and barrier function: cell-free fluid versus blood flow.
    Xu S; Li X; LaPenna KB; Yokota SD; Huke S; He P
    Cardiovasc Res; 2017 Apr; 113(5):508-518. PubMed ID: 28158679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation-induced ATP release from red blood cells requires CFTR activity.
    Sprague RS; Ellsworth ML; Stephenson AH; Kleinhenz ME; Lonigro AJ
    Am J Physiol; 1998 Nov; 275(5):H1726-32. PubMed ID: 9815080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell ATP release correlates with red blood cell hemolysis.
    Ferguson BS; Neidert LE; Rogatzki MJ; Lohse KR; Gladden LB; Kluess HA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C761-C769. PubMed ID: 34495762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.
    Forsyth AM; Wan J; Owrutsky PD; Abkarian M; Stone HA
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):10986-91. PubMed ID: 21690355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.
    Sprague RS; Stephenson AH; Ellsworth ML; Keller C; Lonigro AJ
    Exp Biol Med (Maywood); 2001 May; 226(5):434-9. PubMed ID: 11393171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion.
    Kalsi KK; González-Alonso J
    Exp Physiol; 2012 Mar; 97(3):419-32. PubMed ID: 22227202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of hemolysis during microfiltration.
    Nikfar M; Razizadeh M; Paul R; Liu Y
    Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea.
    Lockwood SY; Erkal JL; Spence DM
    Nitric Oxide; 2014 Apr; 38():1-7. PubMed ID: 24530476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of shear-induced ATP release from red blood cells.
    Wan J; Ristenpart WD; Stone HA
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16432-7. PubMed ID: 18922780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood cell distribution in small and large vessels: Effects of wall and rotating motion of red blood cells.
    Tsubota KI; Namioka K
    J Biomech; 2022 May; 137():111081. PubMed ID: 35472709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous ATP patterns in microvascular networks.
    Gou Z; Zhang H; Misbah C
    J R Soc Interface; 2023 Jul; 20(204):20230186. PubMed ID: 37464803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo.
    Fischer DJ; Torrence NJ; Sprung RJ; Spence DM
    Analyst; 2003 Sep; 128(9):1163-8. PubMed ID: 14529024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible roles for ATP release from RBCs exclude the cAMP-mediated Panx1 pathway.
    Keller AS; Diederich L; Panknin C; DeLalio LJ; Drake JC; Sherman R; Jackson EK; Yan Z; Kelm M; Cortese-Krott MM; Isakson BE
    Am J Physiol Cell Physiol; 2017 Dec; 313(6):C593-C603. PubMed ID: 28855161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro.
    Mairbäurl H; Ruppe FA; Bärtsch P
    Med Sci Sports Exerc; 2013 Oct; 45(10):1941-7. PubMed ID: 23575515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium/protein kinase C signaling mechanisms in shear-induced mechanical responses of red blood cells.
    Ugurel E; Kisakurek ZB; Aksu Y; Goksel E; Cilek N; Yalcin O
    Microvasc Res; 2021 May; 135():104124. PubMed ID: 33359148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.