BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 34547282)

  • 21. Single-Cell Transcriptomics Reveals a Conserved Metaplasia Program in Pancreatic Injury.
    Ma Z; Lytle NK; Chen B; Jyotsana N; Novak SW; Cho CJ; Caplan L; Ben-Levy O; Neininger AC; Burnette DT; Trinh VQ; Tan MCB; Patterson EA; Arrojo E Drigo R; Giraddi RR; Ramos C; Means AL; Matsumoto I; Manor U; Mills JC; Goldenring JR; Lau KS; Wahl GM; DelGiorno KE
    Gastroenterology; 2022 Feb; 162(2):604-620.e20. PubMed ID: 34695382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hes1 plays an essential role in Kras-driven pancreatic tumorigenesis.
    Nishikawa Y; Kodama Y; Shiokawa M; Matsumori T; Marui S; Kuriyama K; Kuwada T; Sogabe Y; Kakiuchi N; Tomono T; Mima A; Morita T; Ueda T; Tsuda M; Yamauchi Y; Sakuma Y; Ota Y; Maruno T; Uza N; Uesugi M; Kageyama R; Chiba T; Seno H
    Oncogene; 2019 May; 38(22):4283-4296. PubMed ID: 30705405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. κB-Ras and Ral GTPases regulate acinar to ductal metaplasia during pancreatic adenocarcinoma development and pancreatitis.
    Beel S; Kolloch L; Apken LH; Jürgens L; Bolle A; Sudhof N; Ghosh S; Wardelmann E; Meisterernst M; Steinestel K; Oeckinghaus A
    Nat Commun; 2020 Jul; 11(1):3409. PubMed ID: 32641778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice.
    Kimura Y; Fukuda A; Ogawa S; Maruno T; Takada Y; Tsuda M; Hiramatsu Y; Araki O; Nagao M; Yoshikawa T; Ikuta K; Yoshioka T; Wang Z; Akiyama H; Wright CV; Takaori K; Uemoto S; Chiba T; Seno H
    Gastroenterology; 2018 Jul; 155(1):194-209.e2. PubMed ID: 29604291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hes1 Controls Exocrine Cell Plasticity and Restricts Development of Pancreatic Ductal Adenocarcinoma in a Mouse Model.
    Hidalgo-Sastre A; Brodylo RL; Lubeseder-Martellato C; Sipos B; Steiger K; Lee M; von Figura G; Grünwald B; Zhong S; Trajkovic-Arsic M; Neff F; Schmid RM; Siveke JT
    Am J Pathol; 2016 Nov; 186(11):2934-2944. PubMed ID: 27639167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice.
    Wu CY; Carpenter ES; Takeuchi KK; Halbrook CJ; Peverley LV; Bien H; Hall JC; DelGiorno KE; Pal D; Song Y; Shi C; Lin RZ; Crawford HC
    Gastroenterology; 2014 Dec; 147(6):1405-16.e7. PubMed ID: 25311989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GRP78 haploinsufficiency suppresses acinar-to-ductal metaplasia, signaling, and mutant
    Shen J; Ha DP; Zhu G; Rangel DF; Kobielak A; Gill PS; Groshen S; Dubeau L; Lee AS
    Proc Natl Acad Sci U S A; 2017 May; 114(20):E4020-E4029. PubMed ID: 28461470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Loss of ATRX Increases Susceptibility to Pancreatic Injury and Oncogenic KRAS in Female But Not Male Mice.
    Young CC; Baker RM; Howlett CJ; Hryciw T; Herman JE; Higgs D; Gibbons R; Crawford H; Brown A; Pin CL
    Cell Mol Gastroenterol Hepatol; 2019; 7(1):93-113. PubMed ID: 30510993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice.
    Martinelli P; Madriles F; Cañamero M; Pau EC; Pozo ND; Guerra C; Real FX
    Gut; 2016 Mar; 65(3):476-86. PubMed ID: 25596178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo reprogramming drives Kras-induced cancer development.
    Shibata H; Komura S; Yamada Y; Sankoda N; Tanaka A; Ukai T; Kabata M; Sakurai S; Kuze B; Woltjen K; Haga H; Ito Y; Kawaguchi Y; Yamamoto T; Yamada Y
    Nat Commun; 2018 May; 9(1):2081. PubMed ID: 29802314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numb regulates acinar cell dedifferentiation and survival during pancreatic damage and acinar-to-ductal metaplasia.
    Greer RL; Staley BK; Liou A; Hebrok M
    Gastroenterology; 2013 Nov; 145(5):1088-1097.e8. PubMed ID: 23891977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AGR2-Dependent Nuclear Import of RNA Polymerase II Constitutes a Specific Target of Pancreatic Ductal Adenocarcinoma in the Context of Wild-Type p53.
    Zhang Z; Li H; Deng Y; Schuck K; Raulefs S; Maeritz N; Yu Y; Hechler T; Pahl A; Fernández-Sáiz V; Wan Y; Wang G; Engleitner T; Öllinger R; Rad R; Reichert M; Diakopoulos KN; Weber V; Li J; Shen S; Zou X; Kleeff J; Mihaljevic A; Michalski CW; Algül H; Friess H; Kong B
    Gastroenterology; 2021 Nov; 161(5):1601-1614.e23. PubMed ID: 34303658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues.
    Aichler M; Seiler C; Tost M; Siveke J; Mazur PK; Da Silva-Buttkus P; Bartsch DK; Langer P; Chiblak S; Dürr A; Höfler H; Klöppel G; Müller-Decker K; Brielmeier M; Esposito I
    J Pathol; 2012 Apr; 226(5):723-34. PubMed ID: 21984419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interleukin 22 Signaling Regulates Acinar Cell Plasticity to Promote Pancreatic Tumor Development in Mice.
    Perusina Lanfranca M; Zhang Y; Girgis A; Kasselman S; Lazarus J; Kryczek I; Delrosario L; Rhim A; Koneva L; Sartor M; Sun L; Halbrook C; Nathan H; Shi J; Crawford HC; Pasca di Magliano M; Zou W; Frankel TL
    Gastroenterology; 2020 Apr; 158(5):1417-1432.e11. PubMed ID: 31843590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SOX9 activity is induced by oncogenic Kras to affect MDC1 and MCMs expression in pancreatic cancer.
    Zhou H; Qin Y; Ji S; Ling J; Fu J; Zhuang Z; Fan X; Song L; Yu X; Chiao PJ
    Oncogene; 2018 Feb; 37(7):912-923. PubMed ID: 29059173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RBPJ Deficiency Sensitizes Pancreatic Acinar Cells to KRAS-Mediated Pancreatic Intraepithelial Neoplasia Initiation.
    Pan L; Mulaw MA; Gout J; Guo M; Zarrin H; Schwarz P; Baumann B; Seufferlein T; Wagner M; Oswald F
    Cell Mol Gastroenterol Hepatol; 2023; 16(5):783-807. PubMed ID: 37543088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia.
    Ebine K; Chow CR; DeCant BT; Hattaway HZ; Grippo PJ; Kumar K; Munshi HG
    Sci Rep; 2016 Jul; 6():29133. PubMed ID: 27364947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy.
    Kong B; Bruns P; Behler NA; Chang L; Schlitter AM; Cao J; Gewies A; Ruland J; Fritzsche S; Valkovskaya N; Jian Z; Regel I; Raulefs S; Irmler M; Beckers J; Friess H; Erkan M; Mueller NS; Roth S; Hackert T; Esposito I; Theis FJ; Kleeff J; Michalski CW
    Gut; 2018 Jan; 67(1):146-156. PubMed ID: 27646934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.
    Wauters E; Sanchez-Arévalo Lobo VJ; Pinho AV; Mawson A; Herranz D; Wu J; Cowley MJ; Colvin EK; Njicop EN; Sutherland RL; Liu T; Serrano M; Bouwens L; Real FX; Biankin AV; Rooman I
    Cancer Res; 2013 Apr; 73(7):2357-67. PubMed ID: 23370328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.