These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Single-Cell Transcriptomics Reveals a Conserved Metaplasia Program in Pancreatic Injury. Ma Z; Lytle NK; Chen B; Jyotsana N; Novak SW; Cho CJ; Caplan L; Ben-Levy O; Neininger AC; Burnette DT; Trinh VQ; Tan MCB; Patterson EA; Arrojo E Drigo R; Giraddi RR; Ramos C; Means AL; Matsumoto I; Manor U; Mills JC; Goldenring JR; Lau KS; Wahl GM; DelGiorno KE Gastroenterology; 2022 Feb; 162(2):604-620.e20. PubMed ID: 34695382 [TBL] [Abstract][Full Text] [Related]
27. Hes1 plays an essential role in Kras-driven pancreatic tumorigenesis. Nishikawa Y; Kodama Y; Shiokawa M; Matsumori T; Marui S; Kuriyama K; Kuwada T; Sogabe Y; Kakiuchi N; Tomono T; Mima A; Morita T; Ueda T; Tsuda M; Yamauchi Y; Sakuma Y; Ota Y; Maruno T; Uza N; Uesugi M; Kageyama R; Chiba T; Seno H Oncogene; 2019 May; 38(22):4283-4296. PubMed ID: 30705405 [TBL] [Abstract][Full Text] [Related]
28. κB-Ras and Ral GTPases regulate acinar to ductal metaplasia during pancreatic adenocarcinoma development and pancreatitis. Beel S; Kolloch L; Apken LH; Jürgens L; Bolle A; Sudhof N; Ghosh S; Wardelmann E; Meisterernst M; Steinestel K; Oeckinghaus A Nat Commun; 2020 Jul; 11(1):3409. PubMed ID: 32641778 [TBL] [Abstract][Full Text] [Related]
29. ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice. Kimura Y; Fukuda A; Ogawa S; Maruno T; Takada Y; Tsuda M; Hiramatsu Y; Araki O; Nagao M; Yoshikawa T; Ikuta K; Yoshioka T; Wang Z; Akiyama H; Wright CV; Takaori K; Uemoto S; Chiba T; Seno H Gastroenterology; 2018 Jul; 155(1):194-209.e2. PubMed ID: 29604291 [TBL] [Abstract][Full Text] [Related]
30. Hes1 Controls Exocrine Cell Plasticity and Restricts Development of Pancreatic Ductal Adenocarcinoma in a Mouse Model. Hidalgo-Sastre A; Brodylo RL; Lubeseder-Martellato C; Sipos B; Steiger K; Lee M; von Figura G; Grünwald B; Zhong S; Trajkovic-Arsic M; Neff F; Schmid RM; Siveke JT Am J Pathol; 2016 Nov; 186(11):2934-2944. PubMed ID: 27639167 [TBL] [Abstract][Full Text] [Related]
31. GRP78 haploinsufficiency suppresses acinar-to-ductal metaplasia, signaling, and mutant Shen J; Ha DP; Zhu G; Rangel DF; Kobielak A; Gill PS; Groshen S; Dubeau L; Lee AS Proc Natl Acad Sci U S A; 2017 May; 114(20):E4020-E4029. PubMed ID: 28461470 [TBL] [Abstract][Full Text] [Related]
32. PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice. Wu CY; Carpenter ES; Takeuchi KK; Halbrook CJ; Peverley LV; Bien H; Hall JC; DelGiorno KE; Pal D; Song Y; Shi C; Lin RZ; Crawford HC Gastroenterology; 2014 Dec; 147(6):1405-16.e7. PubMed ID: 25311989 [TBL] [Abstract][Full Text] [Related]
33. The Loss of ATRX Increases Susceptibility to Pancreatic Injury and Oncogenic KRAS in Female But Not Male Mice. Young CC; Baker RM; Howlett CJ; Hryciw T; Herman JE; Higgs D; Gibbons R; Crawford H; Brown A; Pin CL Cell Mol Gastroenterol Hepatol; 2019; 7(1):93-113. PubMed ID: 30510993 [TBL] [Abstract][Full Text] [Related]
34. Acvr1b Loss Increases Formation of Pancreatic Precancerous Lesions From Acinar and Ductal Cells of Origin. Saeki K; Wood IS; Wang WCK; Patil S; Sun Y; Schaeffer DF; Su GH; Kopp JL Cell Mol Gastroenterol Hepatol; 2024; 18(5):101387. PubMed ID: 39111635 [TBL] [Abstract][Full Text] [Related]
35. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice. Martinelli P; Madriles F; Cañamero M; Pau EC; Pozo ND; Guerra C; Real FX Gut; 2016 Mar; 65(3):476-86. PubMed ID: 25596178 [TBL] [Abstract][Full Text] [Related]
36. In vivo reprogramming drives Kras-induced cancer development. Shibata H; Komura S; Yamada Y; Sankoda N; Tanaka A; Ukai T; Kabata M; Sakurai S; Kuze B; Woltjen K; Haga H; Ito Y; Kawaguchi Y; Yamamoto T; Yamada Y Nat Commun; 2018 May; 9(1):2081. PubMed ID: 29802314 [TBL] [Abstract][Full Text] [Related]
37. AGR2-Dependent Nuclear Import of RNA Polymerase II Constitutes a Specific Target of Pancreatic Ductal Adenocarcinoma in the Context of Wild-Type p53. Zhang Z; Li H; Deng Y; Schuck K; Raulefs S; Maeritz N; Yu Y; Hechler T; Pahl A; Fernández-Sáiz V; Wan Y; Wang G; Engleitner T; Öllinger R; Rad R; Reichert M; Diakopoulos KN; Weber V; Li J; Shen S; Zou X; Kleeff J; Mihaljevic A; Michalski CW; Algül H; Friess H; Kong B Gastroenterology; 2021 Nov; 161(5):1601-1614.e23. PubMed ID: 34303658 [TBL] [Abstract][Full Text] [Related]
38. Numb regulates acinar cell dedifferentiation and survival during pancreatic damage and acinar-to-ductal metaplasia. Greer RL; Staley BK; Liou A; Hebrok M Gastroenterology; 2013 Nov; 145(5):1088-1097.e8. PubMed ID: 23891977 [TBL] [Abstract][Full Text] [Related]
39. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. Aichler M; Seiler C; Tost M; Siveke J; Mazur PK; Da Silva-Buttkus P; Bartsch DK; Langer P; Chiblak S; Dürr A; Höfler H; Klöppel G; Müller-Decker K; Brielmeier M; Esposito I J Pathol; 2012 Apr; 226(5):723-34. PubMed ID: 21984419 [TBL] [Abstract][Full Text] [Related]
40. Interleukin 22 Signaling Regulates Acinar Cell Plasticity to Promote Pancreatic Tumor Development in Mice. Perusina Lanfranca M; Zhang Y; Girgis A; Kasselman S; Lazarus J; Kryczek I; Delrosario L; Rhim A; Koneva L; Sartor M; Sun L; Halbrook C; Nathan H; Shi J; Crawford HC; Pasca di Magliano M; Zou W; Frankel TL Gastroenterology; 2020 Apr; 158(5):1417-1432.e11. PubMed ID: 31843590 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]