These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34547688)

  • 1. Filling the knowledge gap: A suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems.
    Neuwald I; Muschket M; Zahn D; Berger U; Seiwert B; Meier T; Kuckelkorn J; Strobel C; Knepper TP; Reemtsma T
    Water Res; 2021 Oct; 204():117645. PubMed ID: 34547688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS.
    Sjerps RMA; Vughs D; van Leerdam JA; Ter Laak TL; van Wezel AP
    Water Res; 2016 Apr; 93():254-264. PubMed ID: 26921851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercritical Fluid Chromatography Coupled to High-Resolution Mass Spectrometry Reveals Persistent Mobile Organic Compounds with Unknown Toxicity in Wastewater Effluents.
    Tisler S; Savvidou P; Jørgensen MB; Castro M; Christensen JH
    Environ Sci Technol; 2023 Jun; 57(25):9287-9297. PubMed ID: 37307429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ozonation products from trace organic chemicals in municipal wastewater and from metformin: peering through the keyhole with supercritical fluid chromatography-mass spectrometry.
    Seiwert B; Nihemaiti M; Bauer C; Muschket M; Sauter D; Gnirss R; Reemtsma T
    Water Res; 2021 May; 196():117024. PubMed ID: 33756112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of Contaminants of Emerging Concern in Surface Water and Wastewater Effluents, Assisted by the Persistency-Mobility-Toxicity Criteria.
    Montes R; Méndez S; Carro N; Cobas J; Alves N; Neuparth T; Santos MM; Quintana JB; Rodil R
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of emerging persistent and mobile organic contaminants in European water samples.
    Schulze S; Zahn D; Montes R; Rodil R; Quintana JB; Knepper TP; Reemtsma T; Berger U
    Water Res; 2019 Apr; 153():80-90. PubMed ID: 30703676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of different chromatographic and sampling modes for high-resolution mass spectrometric screening of organic microcontaminants in water.
    Castro V; Quintana JB; Carpinteiro I; Cobas J; Carro N; Cela R; Rodil R
    Anal Bioanal Chem; 2021 Sep; 413(22):5607-5618. PubMed ID: 33625537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of various chromatographic approaches for the retention of hydrophilic compounds and MS compatibility.
    Periat A; Grand-Guillaume Perrenoud A; Guillarme D
    J Sep Sci; 2013 Oct; 36(19):3141-51. PubMed ID: 23897590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The comparison of retention behaviour of imidazoline and serotonin receptor ligands in non-aqueous hydrophilic interaction chromatography and supercritical fluid chromatography.
    Obradović D; Stavrianidi AN; Ustinovich KB; Parenago OO; Shpigun OA; Agbaba D
    J Chromatogr A; 2019 Oct; 1603():371-379. PubMed ID: 31060781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source-related smart suspect screening in the aqueous environment: search for tire-derived persistent and mobile trace organic contaminants in surface waters.
    Seiwert B; Klöckner P; Wagner S; Reemtsma T
    Anal Bioanal Chem; 2020 Aug; 412(20):4909-4919. PubMed ID: 32382968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized hidden target screening for very polar molecules in surface waters including a compound database inquiry.
    Minkus S; Grosse S; Bieber S; Veloutsou S; Letzel T
    Anal Bioanal Chem; 2020 Aug; 412(20):4953-4966. PubMed ID: 32488388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid method for quantification of persistent and mobile organic substances in water using supercritical fluid chromatography coupled to high-resolution mass spectrometry.
    Schulze S; Paschke H; Meier T; Muschket M; Reemtsma T; Berger U
    Anal Bioanal Chem; 2020 Aug; 412(20):4941-4952. PubMed ID: 32524369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical fluid chromatography-mass spectrometry using data independent acquisition for the analysis of polar metabolites in human urine.
    Akbal L; Hopfgartner G
    J Chromatogr A; 2020 Jan; 1609():460449. PubMed ID: 31443968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of LC-HRMS nontarget signals in groundwater after source related prioritization.
    Kiefer K; Du L; Singer H; Hollender J
    Water Res; 2021 May; 196():116994. PubMed ID: 33773453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel method for polar metabolite profiling by supercritical fluid chromatography/tandem mass spectrometry.
    Konya Y; Izumi Y; Bamba T
    J Chromatogr A; 2020 Nov; 1632():461587. PubMed ID: 33059177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Placing supercritical fluid chromatography one step ahead of reversed-phase high performance liquid chromatography in the achiral purification arena: a hydrophilic interaction chromatography cross-linked diol chemistry as a new generic stationary phase.
    de la Puente ML; Soto-Yarritu PL; Anta C
    J Chromatogr A; 2012 Aug; 1250():172-81. PubMed ID: 22494643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospray Ionization Efficiency Predictions and Analytical Standard Free Quantification for SFC/ESI/HRMS.
    Bieber S; Letzel T; Kruve A
    J Am Soc Mass Spectrom; 2023 Jul; 34(7):1511-1518. PubMed ID: 37358930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography.
    West C; Khater S; Lesellier E
    J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk.
    Peng Y; Fang W; Krauss M; Brack W; Wang Z; Li F; Zhang X
    Environ Pollut; 2018 Oct; 241():484-493. PubMed ID: 29879689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of potentially mobile and persistent transformation products of REACH-registered chemicals and their occurrence in surface waters.
    Zahn D; Mucha P; Zilles V; Touffet A; Gallard H; Knepper TP; Frömel T
    Water Res; 2019 Mar; 150():86-96. PubMed ID: 30508717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.