These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34547688)

  • 21. Risk-based prioritization of suspects detected in riverine water using complementary chromatographic techniques.
    Been F; Kruve A; Vughs D; Meekel N; Reus A; Zwartsen A; Wessel A; Fischer A; Ter Laak T; Brunner AM
    Water Res; 2021 Oct; 204():117612. PubMed ID: 34536689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry.
    Vergeynst L; Van Langenhove H; Joos P; Demeestere K
    Anal Bioanal Chem; 2014 Apr; 406(11):2533-47. PubMed ID: 24633561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimized suspect screening approach for a comprehensive assessment of the impact of best management practices in reducing micropollutants transport in the Potomac River watershed.
    Guardian MGE; He P; Bermudez A; Duan S; Kaushal SS; Rosenfeldt E; Aga DS
    Water Res X; 2021 May; 11():100088. PubMed ID: 33598649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of LC/MS and SFC/MS for screening of a large and diverse library of pharmaceutically relevant compounds.
    Pinkston JD; Wen D; Morand KL; Tirey DA; Stanton DT
    Anal Chem; 2006 Nov; 78(21):7467-72. PubMed ID: 17073414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chaotropic Effects in Sub/Supercritical Fluid Chromatography via Ammonium Hydroxide in Water-Rich Modifiers: Enabling Separation of Peptides and Highly Polar Pharmaceuticals at the Preparative Scale.
    Liu J; Makarov AA; Bennett R; Haidar Ahmad IA; DaSilva J; Reibarkh M; Mangion I; Mann BF; Regalado EL
    Anal Chem; 2019 Nov; 91(21):13907-13915. PubMed ID: 31549812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils.
    Crepier J; Le Masle A; Charon N; Albrieux F; Duchene P; Heinisch S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1086():38-46. PubMed ID: 29656082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments.
    Chiaia-Hernández AC; Scheringer M; Müller A; Stieger G; Wächter D; Keller A; Pintado-Herrera MG; Lara-Martin PA; Bucheli TD; Hollender J
    Sci Total Environ; 2020 Oct; 740():140181. PubMed ID: 32927551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the protection gap for mobile and persistent chemicals during advanced water treatment - A study in a drinking water production and wastewater treatment plant.
    Gollong G; Neuwald IJ; Kuckelkorn J; Junek R; Zahn D
    Water Res; 2022 Aug; 221():118847. PubMed ID: 35841789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the chemical pollution status of the Dniester River Basin by wide-scope target and suspect screening using mass spectrometric techniques.
    Diamanti KS; Alygizakis NA; Nika MC; Oswaldova M; Oswald P; Thomaidis NS; Slobodnik J
    Anal Bioanal Chem; 2020 Aug; 412(20):4893-4907. PubMed ID: 32347361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening for Polar Chemicals in Water by Trifunctional Mixed-Mode Liquid Chromatography-High Resolution Mass Spectrometry.
    Montes R; Aguirre J; Vidal X; Rodil R; Cela R; Quintana JB
    Environ Sci Technol; 2017 Jun; 51(11):6250-6259. PubMed ID: 28457136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suspect Screening of Chemicals in Hospital Wastewaters Using Effect-Directed Analysis Approach as Prioritization Strategy.
    Lopez-Herguedas N; Mijangos L; Alvarez-Mora I; González-Gaya B; Uribe-Echeverria T; Etxebarria N; Zuloaga O; Olivares M; Prieto A
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supercritical fluid chromatography-tandem mass spectrometry for high throughput bioanalysis of small molecules in drug discovery.
    Zhang X; Ding X; Wang J; Dean B
    J Pharm Biomed Anal; 2019 Feb; 164():62-69. PubMed ID: 30359840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic comparison of sensitivity between hydrophilic interaction liquid chromatography and reversed phase liquid chromatography coupled with mass spectrometry.
    Periat A; Boccard J; Veuthey JL; Rudaz S; Guillarme D
    J Chromatogr A; 2013 Oct; 1312():49-57. PubMed ID: 24034137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of optimizing chromatographic conditions and mass spectrometric parameters for supercritical fluid chromatography/mass spectrometry.
    Fujito Y; Hayakawa Y; Izumi Y; Bamba T
    J Chromatogr A; 2017 Jul; 1508():138-147. PubMed ID: 28624150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry.
    Periat A; Kohler I; Thomas A; Nicoli R; Boccard J; Veuthey JL; Schappler J; Guillarme D
    J Chromatogr A; 2016 Mar; 1439():42-53. PubMed ID: 26387791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applicability of supercritical fluid chromatography - mass spectrometry to metabolomics. I - Optimization of separation conditions for the simultaneous analysis of hydrophilic and lipophilic substances.
    Desfontaine V; Losacco GL; Gagnebin Y; Pezzatti J; Farrell WP; González-Ruiz V; Rudaz S; Veuthey JL; Guillarme D
    J Chromatogr A; 2018 Aug; 1562():96-107. PubMed ID: 29861304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Are (fluorinated) ionic liquids relevant environmental contaminants? High-resolution mass spectrometric screening for per- and polyfluoroalkyl substances in environmental water samples led to the detection of a fluorinated ionic liquid.
    Neuwald IJ; Zahn D; Knepper TP
    Anal Bioanal Chem; 2020 Aug; 412(20):4881-4892. PubMed ID: 32236657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry.
    Hogenboom AC; van Leerdam JA; de Voogt P
    J Chromatogr A; 2009 Jan; 1216(3):510-9. PubMed ID: 18771771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supercritical fluid chromatography - Mass spectrometry in metabolomics: Past, present, and future perspectives.
    van de Velde B; Guillarme D; Kohler I
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Dec; 1161():122444. PubMed ID: 33246285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry.
    Moschet C; Piazzoli A; Singer H; Hollender J
    Anal Chem; 2013 Nov; 85(21):10312-20. PubMed ID: 24161211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.