These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34547724)

  • 1. Investigating the role of low level reinforcement reflex loops in insect locomotion.
    Goldsmith CA; Quinn RD; Szczecinski NS
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34547724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
    von Uckermann G; Büschges A
    J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg.
    Gebehart C; Hooper SL; Büschges A
    Curr Biol; 2022 Sep; 32(17):3847-3854.e3. PubMed ID: 35896118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.
    Büschges A; Wolf H
    J Neurophysiol; 1995 May; 73(5):1843-60. PubMed ID: 7623085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body side-specific changes in sensorimotor processing of movement feedback in a walking insect.
    Schmitz J; Gruhn M; Büschges A
    J Neurophysiol; 2019 Nov; 122(5):2173-2186. PubMed ID: 31553676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
    Hess D; Büschges A
    J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of reflex reversal in stick insect walking: effects of intersegmental signals, changes in direction, and optomotor-induced turning.
    Hellekes K; Blincow E; Hoffmann J; Büschges A
    J Neurophysiol; 2012 Jan; 107(1):239-49. PubMed ID: 21994271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects.
    Stolz T; Diesner M; Neupert S; Hess ME; Delgado-Betancourt E; Pflüger HJ; Schmidt J
    J Neurophysiol; 2019 Dec; 122(6):2388-2413. PubMed ID: 31619113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position.
    Brunn DE; Dean J
    J Neurophysiol; 1994 Sep; 72(3):1208-19. PubMed ID: 7807205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint.
    Gebehart C; Schmidt J; Büschges A
    J Neurophysiol; 2021 May; 125(5):1800-1813. PubMed ID: 33788591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensorimotor pathways involved in interjoint reflex action of an insect leg.
    Hess D; Büschges A
    J Neurobiol; 1997 Dec; 33(7):891-913. PubMed ID: 9407012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existence of a Long-Range Caudo-Rostral Sensory Influence in Terrestrial Locomotion.
    Grabowska M; Toth TI; Büschges A; Daun S
    J Neurosci; 2022 Jun; 42(24):4841-4851. PubMed ID: 35545434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect.
    Sauer AE; Driesang RB; Büschges A; Bässler U
    J Comput Neurosci; 1996 Sep; 3(3):179-98. PubMed ID: 8872700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Input of hair field afferents to a descending interneuron.
    Jaske B; Lepreux G; Dürr V
    J Neurophysiol; 2021 Aug; 126(2):398-412. PubMed ID: 34161139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of locomotion in the decerebrate cat.
    Whelan PJ
    Prog Neurobiol; 1996 Aug; 49(5):481-515. PubMed ID: 8895997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Octopamine effects mimick state-dependent changes in a proprioceptive feedback system.
    Büschges A; Kittmann R; Ramirez JM
    J Neurobiol; 1993 May; 24(5):598-610. PubMed ID: 8326300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THE PHYSIOLOGY OF SENSORY CELLS IN THE VENTRAL SCOLOPARIUM OF THE STICK INSECT FEMORAL CHORDOTONAL ORGAN.
    BUSchges A
    J Exp Biol; 1994 Apr; 189(1):285-92. PubMed ID: 9317814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body side-specific control of motor activity during turning in a walking animal.
    Gruhn M; Rosenbaum P; Bockemühl T; Büschges A
    Elife; 2016 Apr; 5():. PubMed ID: 27130731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.