BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34547733)

  • 1. Nanofiber configuration affects biological performance of decellularized meniscus extracellular matrix incorporated electrospun scaffolds.
    Li H; Wang X; Liu J; Liu Z; Wang H; Mo X; Wu J
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34547733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus.
    Wang X; Zhu J; Sun B; Jin Q; Li H; Xia C; Wang H; Mo X; Wu J
    J Biomed Mater Res B Appl Biomater; 2021 Feb; 109(2):201-213. PubMed ID: 32761755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.
    Wu S; Wang Y; Streubel PN; Duan B
    Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering.
    Xu Y; Wu J; Wang H; Li H; Di N; Song L; Li S; Li D; Xiang Y; Liu W; Mo X; Zhou Q
    Tissue Eng Part C Methods; 2013 Dec; 19(12):925-36. PubMed ID: 23557537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber configuration determines foreign body response of electrospun scaffolds:
    Ma Q; Wang X; Feng B; Liang C; Wan X; El-Newehy M; Abdulhameed MM; Mo X; Wu J
    Biomed Mater; 2024 Jan; 19(2):. PubMed ID: 38194703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study.
    Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W
    Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration.
    Stachewicz U; Qiao T; Rawlinson SCF; Almeida FV; Li WQ; Cattell M; Barber AH
    Acta Biomater; 2015 Nov; 27():88-100. PubMed ID: 26348143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-Shell Nanofibrous Scaffolds for Repair of Meniscus Tears.
    Baek J; Lotz MK; D'Lima DD
    Tissue Eng Part A; 2019 Dec; 25(23-24):1577-1590. PubMed ID: 30950316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expansion of Two-dimension Electrospun Nanofiber Mats into Three-dimension Scaffolds.
    Keit E; Chen S; Wang H; Xie J
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering.
    Lin W; Chen M; Qu T; Li J; Man Y
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1311-1321. PubMed ID: 31436374
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Pauly HM; Sathy BN; Olvera D; McCarthy HO; Kelly DJ; Popat KC; Dunne NJ; Haut Donahue TL
    Tissue Eng Part A; 2017 Aug; 23(15-16):823-836. PubMed ID: 28350237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Jiang J; Chen S; Wang H; Carlson MA; Gombart AF; Xie J
    Acta Biomater; 2018 Mar; 68():237-248. PubMed ID: 29269334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a decellularized meniscus matrix-based nanofibrous scaffold for meniscus tissue engineering.
    Xia B; Kim DH; Bansal S; Bae Y; Mauck RL; Heo SJ
    Acta Biomater; 2021 Jul; 128():175-185. PubMed ID: 33823327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in electrospun scaffolds for meniscus tissue engineering and regeneration.
    Wang X; Ding Y; Li H; Mo X; Wu J
    J Biomed Mater Res B Appl Biomater; 2022 Apr; 110(4):923-949. PubMed ID: 34619021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotion of dermal tissue engineering in a rat model using a composite 3D-printed scaffold with electrospun nanofibers and recipient-site preconditioning with an external volume expansion device.
    Choi HW; Hong J; Kim J; Jeong W; Jo T; Lee HW; Park SW; Choi J
    J Biomater Appl; 2022 Jul; 37(1):23-32. PubMed ID: 35319292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration.
    Deng X; Chen X; Geng F; Tang X; Li Z; Zhang J; Wang Y; Wang F; Zheng N; Wang P; Yu X; Hou S; Zhang W
    J Nanobiotechnology; 2021 Dec; 19(1):400. PubMed ID: 34856996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of scaffold mean pore size in meniscus regeneration.
    Zhang ZZ; Jiang D; Ding JX; Wang SJ; Zhang L; Zhang JY; Qi YS; Chen XS; Yu JK
    Acta Biomater; 2016 Oct; 43():314-326. PubMed ID: 27481291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering.
    Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.