These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34547734)

  • 1. Electrochemical methods for neural interface electrodes.
    Weltin A; Kieninger J
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34547734
    [No Abstract]   [Full Text] [Related]  

  • 2. New life for old wires: electrochemical sensor method for neural implants.
    Weltin A; Ganatra D; König K; Joseph K; Hofmann UG; Urban GA; Kieninger J
    J Neural Eng; 2019 Dec; 17(1):016007. PubMed ID: 31597122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical microelectrode degradation monitoring:
    Doering M; Kieninger J; Urban GA; Weltin A
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34983028
    [No Abstract]   [Full Text] [Related]  

  • 4. Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation.
    Hudak EM; Kumsa DW; Martin HB; Mortimer JT
    J Neural Eng; 2017 Aug; 14(4):046012. PubMed ID: 28345534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Chronopotentiometry to Better Characterize the Charge Injection Mechanisms of Platinum Electrodes Used in Bionic Devices.
    Harris AR; Newbold C; Carter P; Cowan R; Wallace GG
    Front Neurosci; 2019; 13():380. PubMed ID: 31118879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced electrochemical potential monitoring for improved understanding of electrical neurostimulation protocols.
    Doering M; Kieninger J; Kübler J; Hofmann UG; Rupitsch SJ; Urban GA; Weltin A
    J Neural Eng; 2023 Jun; 20(3):. PubMed ID: 37307808
    [No Abstract]   [Full Text] [Related]  

  • 7. Measuring the effective area and charge density of platinum electrodes for bionic devices.
    Harris AR; Newbold C; Carter P; Cowan R; Wallace GG
    J Neural Eng; 2018 Aug; 15(4):046015. PubMed ID: 29595147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ stability monitoring of platinum thin-film electrodes for neural interfaces in the presence of proteins.
    Doering M; Kieninger J; Urban GA; Weltin A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1577-1580. PubMed ID: 36083919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical characteristics of nanostructured platinum electrodes--a cyclic voltammetry study.
    Daubinger P; Kieninger J; Unmüssig T; Urban GA
    Phys Chem Chem Phys; 2014 May; 16(18):8392-9. PubMed ID: 24664444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding charge transfer on the clinically used conical Utah electrode array: charge storage capacity, electrochemical impedance spectroscopy and effective electrode area.
    Harris AR
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33401255
    [No Abstract]   [Full Text] [Related]  

  • 11. Direct measurement of oxygen reduction reactions at neurostimulation electrodes.
    Ehlich J; Migliaccio L; Sahalianov I; Nikić M; Brodský J; Gablech I; Vu XT; Ingebrandt S; Głowacki ED
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688124
    [No Abstract]   [Full Text] [Related]  

  • 12. Advancing Techniques for Investigating the Enzyme-Electrode Interface.
    Kornienko N; Ly KH; Robinson WE; Heidary N; Zhang JZ; Reisner E
    Acc Chem Res; 2019 May; 52(5):1439-1448. PubMed ID: 31042353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved chronic neural stimulation using high surface area platinum electrodes.
    Shah KG; Tolosa VM; Tooker AC; Felix SH; Pannu SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1546-9. PubMed ID: 24109995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: an active in vitro study.
    Dalrymple AN; Huynh M; Robles UA; Marroquin JB; Lee CD; Petrossians A; Whalen JJ; Li D; Parkington HC; Forsythe JS; Green RA; Poole-Warren LA; Shepherd RK; Fallon JB
    J Neural Eng; 2019 Dec; 17(1):016015. PubMed ID: 31652427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the interfacial properties of electrochemically roughened platinum electrodes for neural stimulation.
    Weremfo A; Carter P; Hibbert DB; Zhao C
    Langmuir; 2015 Mar; 31(8):2593-9. PubMed ID: 25669232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Roughening of Thin-Film Platinum Macro and Microelectrodes.
    Ivanovskaya AN; Belle AM; Yorita A; Qian F; Chen S; Tooker A; Lozada RG; Dahlquist D; Tolosa V
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization.
    Ghazavi A; Cogan SF
    J Neural Eng; 2018 Jun; 15(3):036023. PubMed ID: 29205176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of nanoscale damage to glass-sealed platinum electrodes with submicrometer and nanometer size.
    Nioradze N; Chen R; Kim J; Shen M; Santhosh P; Amemiya S
    Anal Chem; 2013 Jul; 85(13):6198-202. PubMed ID: 23763642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Potentiometry for Dissolved Oxygen Monitoring with Platinum Electrodes.
    Zimmermann P; Weltin A; Urban GA; Kieninger J
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30042309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical performance of platinum electrodes within the multi-electrode spiral nerve cuff.
    Rozman J; Pečlin P; Mehle A; Šala M
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):525-33. PubMed ID: 24938675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.