These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 34547890)
1. Donor-Acceptor Pairs in Covalent Organic Frameworks Promoting Electron Transfer for Metal-Free Photocatalytic Organic Synthesis. Qiu W; He Y; Li L; Liu Z; Zhong S; Yu Y Langmuir; 2021 Oct; 37(39):11535-11543. PubMed ID: 34547890 [TBL] [Abstract][Full Text] [Related]
2. Thiadiazole-Based Covalent Organic Frameworks with a Donor-Acceptor Structure: Modulating Intermolecular Charge Transfer for Efficient Photocatalytic Degradation of Typical Emerging Contaminants. Hou Y; Liu F; Zhang B; Tong M Environ Sci Technol; 2022 Nov; 56(22):16303-16314. PubMed ID: 36305749 [TBL] [Abstract][Full Text] [Related]
3. Rational Modification of Two-Dimensional Donor-Acceptor Covalent Organic Frameworks for Enhanced Visible Light Photocatalytic Activity. Lin C; Liu X; Yu B; Han C; Gong L; Wang C; Gao Y; Bian Y; Jiang J ACS Appl Mater Interfaces; 2021 Jun; 13(23):27041-27048. PubMed ID: 34096700 [TBL] [Abstract][Full Text] [Related]
4. Hydrazone-linked 2D porphyrinic covalent organic framework photocatalysis for visible light-driven aerobic oxidation of amines to imines. Wu S; Zhang YF; Ding H; Li X; Lang X J Colloid Interface Sci; 2022 Mar; 610():446-454. PubMed ID: 34933196 [TBL] [Abstract][Full Text] [Related]
5. Boosting Exciton Dissociation and Charge Transfer in Triazole-Based Covalent Organic Frameworks by Increasing the Donor Unit from One to Two for the Efficient Photocatalytic Elimination of Emerging Contaminants. Hou Y; Liu F; Nie C; Li Z; Tong M Environ Sci Technol; 2023 Aug; 57(31):11675-11686. PubMed ID: 37486062 [TBL] [Abstract][Full Text] [Related]
6. Tuning Local Charge Distribution in Multicomponent Covalent Organic Frameworks for Dramatically Enhanced Photocatalytic Uranium Extraction. Yang H; Hao M; Xie Y; Liu X; Liu Y; Chen Z; Wang X; Waterhouse GIN; Ma S Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202303129. PubMed ID: 37117155 [TBL] [Abstract][Full Text] [Related]
7. Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations. Liu H; Li C; Li H; Ren Y; Chen J; Tang J; Yang Q ACS Appl Mater Interfaces; 2020 May; 12(18):20354-20365. PubMed ID: 32272831 [TBL] [Abstract][Full Text] [Related]
8. Programming Tetrathiafulvalene-Based Covalent Organic Frameworks for Promoted Photoinduced Molecular Oxygen Activation. Xu H; Xia S; Li C; Li Y; Xing W; Jiang Y; Chen X Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405476. PubMed ID: 38706228 [TBL] [Abstract][Full Text] [Related]
9. Lewis Acid Regulation Strategy for Constructing D-A-A Covalent Organic Frameworks with Enhanced Photocatalytic Organic Conversion. Ma B; Lin X; Xuan D; Xu J; Jia Z; Lin C; Li Y; Zhai L Chemistry; 2024 Dec; 30(67):e202402736. PubMed ID: 39143867 [TBL] [Abstract][Full Text] [Related]
10. Photochromic radical states in 3D covalent organic frameworks with zyg topology for enhanced photocatalysis. Ma TT; Huang GZ; Wang XH; Liang Y; Li RH; Wang B; Yao SJ; Liao JP; Li SL; Yan Y; Lan YQ Natl Sci Rev; 2024 Jul; 11(7):nwae177. PubMed ID: 38883289 [TBL] [Abstract][Full Text] [Related]
11. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Chen R; Wang Y; Ma Y; Mal A; Gao XY; Gao L; Qiao L; Li XB; Wu LZ; Wang C Nat Commun; 2021 Mar; 12(1):1354. PubMed ID: 33649344 [TBL] [Abstract][Full Text] [Related]
12. A Porphyrin-Based Covalent Organic Framework for Metal-Free Photocatalytic Aerobic Oxidative Coupling of Amines. He H; Fang X; Zhai D; Zhou W; Li Y; Zhao W; Liu C; Li Z; Deng W Chemistry; 2021 Oct; 27(58):14390-14395. PubMed ID: 34383348 [TBL] [Abstract][Full Text] [Related]
13. A BODIPY-Based 1D Covalent Organic Framework for Photocatalytic Aerobic Oxidation. Zhao J; Xie M; Chen X; Jin JK; Zhao W; Luo J; Ning GH; Liu J; Li D Chem Asian J; 2023 Jul; 18(13):e202300328. PubMed ID: 37194612 [TBL] [Abstract][Full Text] [Related]
14. Donor-acceptor moiety functionalized covalent organic frameworks for boosting charge separation and H Gu CC; Ni CQ; Wu RJ; Deng L; Zou J; Li H; Tong CY; Xu FH; Weng BC; Zhu RL J Colloid Interface Sci; 2024 Mar; 658():450-458. PubMed ID: 38118191 [TBL] [Abstract][Full Text] [Related]
15. Designed Synthesis of a 2D Porphyrin-Based sp Chen R; Shi JL; Ma Y; Lin G; Lang X; Wang C Angew Chem Int Ed Engl; 2019 May; 58(19):6430-6434. PubMed ID: 30884054 [TBL] [Abstract][Full Text] [Related]
16. Orientation-Dependent Photocatalysis of Imine-Linked Covalent Organic Frameworks Based on Thienothiophenes for Oxidation of Amines to Imines. Zhang K; Zhang F; Huang F; Xiong K; Zeng B; Lang X ACS Appl Mater Interfaces; 2024 Oct; 16(39):52455-52465. PubMed ID: 39288029 [TBL] [Abstract][Full Text] [Related]
17. Impact of Imine Bond Orientations and Acceptor Groups on Photocatalytic Hydrogen Generation of Donor-Acceptor Covalent Organic Frameworks. Han CQ; Guo JX; Sun S; Wang ZY; Wang L; Liu XY Small; 2024 Dec; 20(49):e2405887. PubMed ID: 39248647 [TBL] [Abstract][Full Text] [Related]
18. Donor-acceptor type COFs with multiple fluorine groups as electron storage units to promote antimicrobial performance. Ma B; Lin X; Zhu T; Zheng X; Zhu J Colloids Surf B Biointerfaces; 2024 Oct; 242():114101. PubMed ID: 39038411 [TBL] [Abstract][Full Text] [Related]
19. Elaborate Modulating Binding Strength of Intermediates via Three-component Covalent Organic Frameworks for CO Liu M; Cui CX; Yang S; Yang X; Li X; He J; Xu Q; Zeng G Angew Chem Int Ed Engl; 2024 May; 63(20):e202401750. PubMed ID: 38407379 [TBL] [Abstract][Full Text] [Related]
20. Porphyrin-based donor-acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation. Zhu Y; Zhu D; Chen Y; Yan Q; Liu CY; Ling K; Liu Y; Lee D; Wu X; Senftle TP; Verduzco R Chem Sci; 2021 Dec; 12(48):16092-16099. PubMed ID: 35024131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]