These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 34548080)
1. Reducing stiffness of shock-absorbing pylon amplifies prosthesis energy loss and redistributes joint mechanical work during walking. Maun JA; Gard SA; Major MJ; Takahashi KZ J Neuroeng Rehabil; 2021 Sep; 18(1):143. PubMed ID: 34548080 [TBL] [Abstract][Full Text] [Related]
2. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role? Boutwell E; Stine R; Gard S Prosthet Orthot Int; 2017 Apr; 41(2):178-185. PubMed ID: 27117010 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of shock-absorbing versus rigid pylons for impact reduction in transtibial amputees based on laboratory, field, and outcome metrics. Berge JS; Czerniecki JM; Klute GK J Rehabil Res Dev; 2005; 42(6):795-808. PubMed ID: 16680617 [TBL] [Abstract][Full Text] [Related]
4. Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. Ray SF; Wurdeman SR; Takahashi KZ J Neuroeng Rehabil; 2018 Jan; 15(1):6. PubMed ID: 29374491 [TBL] [Abstract][Full Text] [Related]
5. The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. Gard SA; Konz RJ J Rehabil Res Dev; 2003; 40(2):109-24. PubMed ID: 15077637 [TBL] [Abstract][Full Text] [Related]
6. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning. Shell CE; Segal AD; Klute GK; Neptune RR Clin Biomech (Bristol); 2017 Nov; 49():56-63. PubMed ID: 28869812 [TBL] [Abstract][Full Text] [Related]
7. Does Decreasing Below-Knee Prosthesis Pylon Longitudinal Stiffness Increase Prosthetic Limb Collision and Push-Off Work During Gait? Major MJ; Zavaleta JL; Gard SA J Appl Biomech; 2019 Oct; 35(5):312–319. PubMed ID: 31141448 [TBL] [Abstract][Full Text] [Related]
8. Impact testing of the residual limb: System response to changes in prosthetic stiffness. Boutwell E; Stine R; Gard S J Rehabil Res Dev; 2016; 53(3):369-78. PubMed ID: 27272982 [TBL] [Abstract][Full Text] [Related]
9. Variable-stiffness prosthesis improves biomechanics of walking across speeds compared to a passive device. Rogers-Bradley E; Yeon SH; Landis C; Lee DRC; Herr HM Sci Rep; 2024 Jul; 14(1):16521. PubMed ID: 39019986 [TBL] [Abstract][Full Text] [Related]
10. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping. De Asha AR; Munjal R; Kulkarni J; Buckley JG J Neuroeng Rehabil; 2013 Oct; 10():107. PubMed ID: 24134803 [TBL] [Abstract][Full Text] [Related]
11. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users. Pinhey SR; Murata H; Hisano G; Ichimura D; Hobara H; Major MJ J Biomech; 2022 Mar; 134():110984. PubMed ID: 35182901 [TBL] [Abstract][Full Text] [Related]
12. Effect of a shock-absorbing pylon on transmission of heel strike forces during the gait of people with unilateral trans-tibial amputations: a pilot study. Adderson JA; Parker KE; Macleod DA; Kirby RL; McPhail C Prosthet Orthot Int; 2007 Dec; 31(4):384-93. PubMed ID: 18050009 [TBL] [Abstract][Full Text] [Related]
13. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Fey NP; Klute GK; Neptune RR Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999 [TBL] [Abstract][Full Text] [Related]
14. Ideal operating conditions for a variable stiffness transverse plane adapter for individuals with lower-limb amputation. Pew C; Segal AD; Neptune RR; Klute GK J Biomech; 2019 Nov; 96():109330. PubMed ID: 31521371 [TBL] [Abstract][Full Text] [Related]
15. Distribution of joint work during walking on slopes among persons with transfemoral amputation. Bonnet X; Villa C; Loiret I; Lavaste F; Pillet H J Biomech; 2021 Dec; 129():110843. PubMed ID: 34773834 [TBL] [Abstract][Full Text] [Related]
16. The biomechanical influence of transtibial Bone-Anchored limbs during walking. Vinson AL; Vandenberg NW; Awad ME; Christiansen CL; Stoneback JW; M M Gaffney B J Biomech; 2024 May; 168():112098. PubMed ID: 38636112 [TBL] [Abstract][Full Text] [Related]
17. Spring-mass behavioural adaptations to acute changes in prosthetic blade stiffness during submaximal running in unilateral transtibial prosthesis users. Barnett CT; De Asha AR; Skervin TK; Buckley JG; Foster RJ Gait Posture; 2022 Oct; 98():153-159. PubMed ID: 36126535 [TBL] [Abstract][Full Text] [Related]
18. Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds? D'Andrea S; Wilhelm N; Silverman AK; Grabowski AM Clin Orthop Relat Res; 2014 Oct; 472(10):3044-54. PubMed ID: 24781926 [TBL] [Abstract][Full Text] [Related]
19. Systematic Assessment of Prosthesis Stiffness on User Biomechanics Using the Lower Leg Trajectory Error Framework and Its Implication for the Design and Evaluation of Ankle-Foot Prostheses. Prost V; Johnson WB; Kent JA; Major MJ; Winter AG J Biomech Eng; 2023 Apr; 145(4):. PubMed ID: 36346192 [TBL] [Abstract][Full Text] [Related]
20. Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study. De Pauw K; Serrien B; Baeyens JP; Cherelle P; De Bock S; Ghillebert J; Bailey SP; Lefeber D; Roelands B; Vanderborght B; Meeusen R Clin Biomech (Bristol); 2020 Jan; 71():59-67. PubMed ID: 31704536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]