These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 34548108)
1. Response and oil degradation activities of a northeast Atlantic bacterial community to biogenic and synthetic surfactants. Nikolova CN; Ijaz UZ; Magill C; Kleindienst S; Joye SB; Gutierrez T Microbiome; 2021 Sep; 9(1):191. PubMed ID: 34548108 [TBL] [Abstract][Full Text] [Related]
2. Legacy and dispersant influence microbial community dynamics in cold seawater contaminated by crude oil water accommodated fractions. Hafez T; Ortiz-Zarragoitia M; Cagnon C; Cravo-Laureau C; Duran R Environ Res; 2022 Sep; 212(Pt D):113467. PubMed ID: 35588780 [TBL] [Abstract][Full Text] [Related]
3. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms. Techtmann SM; Zhuang M; Campo P; Holder E; Elk M; Hazen TC; Conmy R; Santo Domingo JW Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28283527 [TBL] [Abstract][Full Text] [Related]
4. The Interactive Effects of Crude Oil and Corexit 9500 on Their Biodegradation in Arctic Seawater. Gofstein TR; Perkins M; Field J; Leigh MB Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826215 [TBL] [Abstract][Full Text] [Related]
5. Diesel and Crude Oil Biodegradation by Cold-Adapted Microbial Communities in the Labrador Sea. Murphy SMC; Bautista MA; Cramm MA; Hubert CRJ Appl Environ Microbiol; 2021 Sep; 87(20):e0080021. PubMed ID: 34378990 [TBL] [Abstract][Full Text] [Related]
6. Effects of Dispersants and Biosurfactants on Crude-Oil Biodegradation and Bacterial Community Succession. Thomas GE; Brant JL; Campo P; Clark DR; Coulon F; Gregson BH; McGenity TJ; McKew BA Microorganisms; 2021 Jun; 9(6):. PubMed ID: 34206054 [TBL] [Abstract][Full Text] [Related]
7. A rhamnolipid biosurfactant increased bacterial population size but hindered hydrocarbon biodegradation in weathered contaminated soils. Akbari A; Kasprzyk A; Galvez R; Ghoshal S Sci Total Environ; 2021 Jul; 778():145441. PubMed ID: 33725602 [TBL] [Abstract][Full Text] [Related]
8. Metagenomic and Metatranscriptomic Responses of Chemical Dispersant Application during a Marine Dilbit Spill. Cao Y; Zhang B; Greer CW; Lee K; Cai Q; Song X; Tremblay J; Zhu Z; Dong G; Chen B Appl Environ Microbiol; 2022 Mar; 88(5):e0215121. PubMed ID: 35020455 [TBL] [Abstract][Full Text] [Related]
9. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic. Suja LD; Summers S; Gutierrez T Front Microbiol; 2017; 8():676. PubMed ID: 28484435 [TBL] [Abstract][Full Text] [Related]
10. Inter- and Intra-Annual Bacterioplankton Community Patterns in a Deepwater Sub-Arctic Region: Persistent High Background Abundance of Putative Oil Degraders. Angelova AG; Berx B; Bresnan E; Joye SB; Free A; Gutierrez T mBio; 2021 Mar; 12(2):. PubMed ID: 33727364 [TBL] [Abstract][Full Text] [Related]
11. Exploration of marine bacterioplankton community assembly mechanisms during chemical dispersant and surfactant-assisted oil biodegradation. Nikolova C; Ijaz UZ; Gutierrez T Ecol Evol; 2021 Oct; 11(20):13862-13874. PubMed ID: 34707823 [TBL] [Abstract][Full Text] [Related]
12. Mesopelagic microbial community dynamics in response to increasing oil and Corexit 9500 concentrations. Aljandal S; Doyle SM; Bera G; Wade TL; Knap AH; Sylvan JB PLoS One; 2022; 17(2):e0263420. PubMed ID: 35196352 [TBL] [Abstract][Full Text] [Related]
13. Metatranscriptomic response of deep ocean microbial populations to infusions of oil and/or synthetic chemical dispersant. Peña-Montenegro TD; Kleindienst S; Allen AE; Eren AM; McCrow JP; Arnold J; Joye SB Appl Environ Microbiol; 2024 Aug; 90(8):e0108324. PubMed ID: 39041797 [TBL] [Abstract][Full Text] [Related]
14. Use of dispersant in mudflat oil-contaminated sediment: behavior and effects of dispersed oil on micro- and macrobenthos. Cuny P; Gilbert F; Militon C; Stora G; Bonin P; Michotey V; Guasco S; Duboscq K; Cagnon C; Jézéquel R; Cravo-Laureau C; Duran R Environ Sci Pollut Res Int; 2015 Oct; 22(20):15370-6. PubMed ID: 26062462 [TBL] [Abstract][Full Text] [Related]
15. The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill. Acosta-González A; Martirani-von Abercron SM; Rosselló-Móra R; Wittich RM; Marqués S Environ Sci Pollut Res Int; 2015 Oct; 22(20):15200-14. PubMed ID: 25869434 [TBL] [Abstract][Full Text] [Related]
16. Hydrocarbon-degrading bacteria in deep-water subarctic sediments (Faroe-Shetland Channel). Gontikaki E; Potts LD; Anderson JA; Witte U J Appl Microbiol; 2018 Oct; 125(4):1040-1053. PubMed ID: 29928773 [TBL] [Abstract][Full Text] [Related]
17. Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: An Arctic field and laboratory study. Krolicka A; Boccadoro C; Nilsen MM; Demir-Hilton E; Birch J; Preston C; Scholin C; Baussant T Sci Total Environ; 2019 Dec; 696():133715. PubMed ID: 31470316 [TBL] [Abstract][Full Text] [Related]
18. Dynamic changes in the microbial community in the surface seawater of Jiaozhou Bay after crude oil spills: An in situ microcosm study. Zhou Y; Kong Q; Zhao X; Lin Z; Zhang H Environ Pollut; 2022 Aug; 307():119496. PubMed ID: 35594998 [TBL] [Abstract][Full Text] [Related]
19. Compositional change of bacterial communities in oil-polluted seawater amid varying degrees of nanoplankton bacterivory. Tang CH; Buskey EJ Environ Pollut; 2024 Oct; 359():124723. PubMed ID: 39142426 [TBL] [Abstract][Full Text] [Related]
20. Biodegradation potential of residue generated during the in-situ burning of oil in the marine environment. Pyke R; Fortin N; Wasserscheid J; Tremblay J; Schreiber L; Levesque MJ; Messina-Pacheco S; Whyte L; Wang F; Lee K; Cooper D; Greer CW J Hazard Mater; 2023 Mar; 445():130439. PubMed ID: 36437193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]