These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34548539)

  • 21. Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation.
    Gordeyeva KS; Fall AB; Hall S; Wicklein B; Bergström L
    J Colloid Interface Sci; 2016 Jun; 472():44-51. PubMed ID: 27003498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-density PDMS foams by controlled destabilization of thixotropic emulsions.
    Timusk M; Nigol IA; Vlassov S; Oras S; Kangur T; Linarts A; Šutka A
    J Colloid Interface Sci; 2022 Nov; 626():265-275. PubMed ID: 35792458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K.
    Lee S; Yang F; Suh J; Yang S; Lee Y; Li G; Sung Choe H; Suslu A; Chen Y; Ko C; Park J; Liu K; Li J; Hippalgaonkar K; Urban JJ; Tongay S; Wu J
    Nat Commun; 2015 Oct; 6():8573. PubMed ID: 26472285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable Fabrication of Thermally Insulating Mechanically Resilient Hierarchically Porous Polymer Foams.
    Rizvi A; Chu RKM; Park CB
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38410-38417. PubMed ID: 30360118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal oxide cluster-assisted assembly of anisotropic cellulose nanocrystal aerogels for balanced mechanical and thermal insulation properties.
    Wang H; Xia B; Song R; Huang W; Zhang M; Liu C; Ke Y; Yin JF; Chen K; Yin P
    Nanoscale; 2023 Mar; 15(11):5469-5475. PubMed ID: 36852628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved Thermal Insulating Properties of Renewable Polyol Based Polyurethane Foams Reinforced with Chicken Feathers.
    Aranberri I; Montes S; Wesołowska E; Rekondo A; Wrześniewska-Tosik K; Grande HJ
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31816975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose.
    Li T; Song J; Zhao X; Yang Z; Pastel G; Xu S; Jia C; Dai J; Chen C; Gong A; Jiang F; Yao Y; Fan T; Yang B; Wågberg L; Yang R; Hu L
    Sci Adv; 2018 Mar; 4(3):eaar3724. PubMed ID: 29536048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams.
    Borkotoky SS; Chakraborty G; Katiyar V
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1518-1531. PubMed ID: 29981330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quasi-Isotropically Thermal Conductive, Highly Transparent, Insulating and Super-Flexible Polymer Films Achieved by Cross Linked 2D Hexagonal Boron Nitride Nanosheets.
    An L; Gu R; Zhong B; Wang J; Zhang J; Yu Y
    Small; 2021 Nov; 17(46):e2101409. PubMed ID: 34636142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan-based thermal insulation compressible foam enhanced with high performance of piezoelectric generation and sensing.
    Song Y; Zhao Q; Qu M; Zhang R; Tang P; Bin Y; Li S; Zhao W; Wang H
    Carbohydr Polym; 2022 Oct; 294():119775. PubMed ID: 35868752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.
    Carriço CS; Fraga T; Carvalho VE; Pasa VMD
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28671592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly magnetic hybrid foams based on aligned tannic acid-coated iron oxide nanoparticles and TEMPO-oxidized cellulose nanofibers.
    Hadi SE; Yeprem HA; Åhl A; Morsali M; Kapuscinski M; Kriechbaum K; Sipponen MH; Bergström L
    RSC Adv; 2023 May; 13(20):13919-13927. PubMed ID: 37181513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and properties of hybrid foams from nanocellulose and kaolin-microfibrillated cellulose composite.
    González-Ugarte AS; Hafez I; Tajvidi M
    Sci Rep; 2020 Oct; 10(1):17459. PubMed ID: 33060619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-Porous Nanocellulose Foams: A Facile and Scalable Fabrication Approach.
    Antonini C; Wu T; Zimmermann T; Kherbeche A; Thoraval MJ; Nyström G; Geiger T
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31404987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Sintering on Thermal, Mechanical and Technological Properties of Glass Foams Produced from Agro-Industrial Residues.
    da Silva Fernandes FA; de Oliveira Costa DDS; Rossignolo JA
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil.
    Polaczek K; Kurańska M; Malewska E; Czerwicka-Pach M; Prociak A
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the Stability of Aqueous Dispersions and Foams Comprising Cellulose Nanofibrils (CNF) with CaCO₃ Particles.
    Tenhunen TM; Pöhler T; Kokko A; Orelma H; Gane P; Schenker M; Tammelin T
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30142915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal conductivity and combustion properties of wheat gluten foams.
    Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compostable, fully biobased foams using PLA and micro cellulose for zero energy buildings.
    Oluwabunmi K; D'Souza NA; Zhao W; Choi TY; Theyson T
    Sci Rep; 2020 Oct; 10(1):17771. PubMed ID: 33082364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons.
    Chen J; Meng L
    ACS Omega; 2022 Jun; 7(23):20186-20194. PubMed ID: 35722022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.