These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34549108)

  • 1. Comparison of Different Neural Network Architectures for Plasmonic Inverse Design.
    Wu Q; Li X; Wang W; Dong Q; Xiao Y; Cao X; Wang L; Gao L
    ACS Omega; 2021 Sep; 6(36):23076-23082. PubMed ID: 34549108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bidirectional Deep Neural Network for Accurate Silicon Color Design.
    Gao L; Li X; Liu D; Wang L; Yu Z
    Adv Mater; 2019 Dec; 31(51):e1905467. PubMed ID: 31696973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural networks enabled forward and inverse design of reconfigurable metasurfaces.
    Tanriover I; Hadibrata W; Scheuer J; Aydin K
    Opt Express; 2021 Aug; 29(17):27219-27227. PubMed ID: 34615142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Neural Network-Based Prediction of the Optical Properties of Spherical Core-Shell Plasmonic Metastructures.
    Vahidzadeh E; Shankar K
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33806266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks.
    Yan R; Wang T; Jiang X; Huang X; Wang L; Yue X; Wang H; Wang Y
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Convolutional Mixture Density Network for Inverse Design of Layered Photonic Structures.
    Unni R; Yao K; Zheng Y
    ACS Photonics; 2020 Oct; 7(10):2703-2712. PubMed ID: 38031541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse design of plasmonic nanoantenna using generative adversarial network.
    Bao Q; Zhang D; Liu X; Wang L; Xiao J
    Nanotechnology; 2023 Jun; 34(36):. PubMed ID: 37311448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches.
    Adibnia E; Mansouri-Birjandi MA; Ghadrdan M; Jafari P
    Sci Rep; 2024 Mar; 14(1):5787. PubMed ID: 38461205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance prediction and inverse design of multi-core selective couplers based on neural networks.
    Fan J; Huang W; Zhang R; Gu Z; Song B; Chen S
    Appl Opt; 2022 Nov; 61(32):9350-9359. PubMed ID: 36606881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Downward-Growing Neural Networks.
    Laveglia V; Trentin E
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End-to-End Diverse Metasurface Design and Evaluation Using an Invertible Neural Network.
    Wang Y; Yang Z; Hu P; Hossain S; Liu Z; Ou TH; Ye J; Wu W
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse design of plasmonic metasurfaces by convolutional neural network.
    Lin R; Zhai Y; Xiong C; Li X
    Opt Lett; 2020 Mar; 45(6):1362-1365. PubMed ID: 32163966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures.
    Wiecha PR; Muskens OL
    Nano Lett; 2020 Jan; 20(1):329-338. PubMed ID: 31825227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient architecture for deep neural networks with heterogeneous sensitivity.
    Cho H; Jang J; Lee C; Yang S
    Neural Netw; 2021 Feb; 134():95-106. PubMed ID: 33302052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanostructure design and characterization via Deep Learning.
    Malkiel I; Mrejen M; Nagler A; Arieli U; Wolf L; Suchowski H
    Light Sci Appl; 2018; 7():60. PubMed ID: 30863544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse design of an integrated-nanophotonics optical neural network.
    Qu Y; Zhu H; Shen Y; Zhang J; Tao C; Ghosh P; Qiu M
    Sci Bull (Beijing); 2020 Jul; 65(14):1177-1183. PubMed ID: 36659147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of metamaterials and metamaterial-microcavity based on deep neural networks.
    Lan G; Wang Y; Ou JY
    Nanoscale Adv; 2022 Nov; 4(23):5137-5143. PubMed ID: 36504733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse design of polarization conversion metasurfaces by deep neural networks.
    Chen W; Li R; Huang Z; Wu H; Wei J; Wang S; Wang L; Li Y
    Appl Opt; 2023 Mar; 62(8):2048-2054. PubMed ID: 37133092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient optimization of SHG hotspot switching in plasmonic nanoantennas using phase-shaped laser pulses controlled by neural networks.
    Comin A; Hartschuh A
    Opt Express; 2018 Dec; 26(26):33678-33686. PubMed ID: 30650801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.