These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 34549108)
21. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction. Kofler A; Haltmeier M; Schaeffter T; Kolbitsch C Med Phys; 2021 May; 48(5):2412-2425. PubMed ID: 33651398 [TBL] [Abstract][Full Text] [Related]
22. Deep convolutional neural network and IoT technology for healthcare. Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Trabelsi A; Chaabane M; Ben-Hur A Bioinformatics; 2019 Jul; 35(14):i269-i277. PubMed ID: 31510640 [TBL] [Abstract][Full Text] [Related]
24. Modeling task-based fMRI data via deep belief network with neural architecture search. Qiang N; Dong Q; Zhang W; Ge B; Ge F; Liang H; Sun Y; Gao J; Liu T Comput Med Imaging Graph; 2020 Jul; 83():101747. PubMed ID: 32593949 [TBL] [Abstract][Full Text] [Related]
25. Neutron spectrum unfolding using radial basis function neural networks. Alvar AA; Deevband MR; Ashtiyani M Appl Radiat Isot; 2017 Nov; 129():35-41. PubMed ID: 28802156 [TBL] [Abstract][Full Text] [Related]
26. Physics-Guided Neural-Network-Based Inverse Design of a Photonic Liang B; Xu D; Yu N; Xu Y; Ma X; Liu Q; Asif MS; Yan R; Liu M ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35649169 [TBL] [Abstract][Full Text] [Related]
27. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Sajedian I; Kim J; Rho J Microsyst Nanoeng; 2019; 5():27. PubMed ID: 31240107 [TBL] [Abstract][Full Text] [Related]
28. Plasmonic nanoparticle simulations and inverse design using machine learning. He J; He C; Zheng C; Wang Q; Ye J Nanoscale; 2019 Sep; 11(37):17444-17459. PubMed ID: 31531431 [TBL] [Abstract][Full Text] [Related]
29. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks. Książek K; Romaszewski M; Głomb P; Grabowski B; Cholewa M Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233358 [TBL] [Abstract][Full Text] [Related]
30. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles. So S; Mun J; Rho J ACS Appl Mater Interfaces; 2019 Jul; 11(27):24264-24268. PubMed ID: 31199610 [TBL] [Abstract][Full Text] [Related]
31. Inverting feedforward neural networks using linear and nonlinear programming. Lu BL; Kita H; Nishikawa Y IEEE Trans Neural Netw; 1999; 10(6):1271-90. PubMed ID: 18252630 [TBL] [Abstract][Full Text] [Related]
32. Networks for Nonlinear Diffusion Problems in Imaging. Arridge S; Hauptmann A J Math Imaging Vis; 2020; 62(3):471-487. PubMed ID: 32300266 [TBL] [Abstract][Full Text] [Related]
33. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics. Liang L; Liu M; Elefteriades J; Sun W Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344 [TBL] [Abstract][Full Text] [Related]
34. HELLO: improved neural network architectures and methodologies for small variant calling. Ramachandran A; Lumetta SS; Klee EW; Chen D BMC Bioinformatics; 2021 Aug; 22(1):404. PubMed ID: 34391391 [TBL] [Abstract][Full Text] [Related]
35. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation. Zenooz AM; Ashtiani FZ; Ranjbar R; Nikbakht F; Bolouri O Prep Biochem Biotechnol; 2017 Jul; 47(6):570-577. PubMed ID: 28045608 [TBL] [Abstract][Full Text] [Related]
36. DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks. Pezzotti N; Hollt T; Van Gemert J; Lelieveldt BPF; Eisemann E; Vilanova A IEEE Trans Vis Comput Graph; 2018 Jan; 24(1):98-108. PubMed ID: 28866543 [TBL] [Abstract][Full Text] [Related]
37. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation. Alkhadhr S; Almekkawy M Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210 [TBL] [Abstract][Full Text] [Related]
38. The accelerated design of the nanoantenna arrays by deep learning. Ma L; Wang S; Li Y; Wang G; Duan X Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35834909 [TBL] [Abstract][Full Text] [Related]
39. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks. Beguš G Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122 [TBL] [Abstract][Full Text] [Related]
40. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images. Mela CA; Liu Y BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]