These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 34549151)
1. Enhancing the Photoelectric Properties of Zinc Porphyrin Dyes by Introducing Five-Membered Heterocyclic Rings into the Electron Donor: A Density Functional Theory and Time-Dependent Density Functional Theory Study. Yuan Q; Yu Y; Sun Z; Song X ACS Omega; 2021 Sep; 6(36):23551-23557. PubMed ID: 34549151 [TBL] [Abstract][Full Text] [Related]
2. Theoretical design of porphyrin sensitizers with different acceptors for application in dye-sensitized solar cells. Jin X; Li D; Sun L; Wang CL; Bai FQ RSC Adv; 2018 May; 8(35):19804-19810. PubMed ID: 35541014 [TBL] [Abstract][Full Text] [Related]
3. Understanding the electronic structures and absorption properties of porphyrin sensitizers YD2 and YD2-o-C8 for dye-sensitized solar cells. Han LH; Zhang CR; Zhe JW; Jin NZ; Shen YL; Wang W; Gong JJ; Chen YH; Liu ZJ Int J Mol Sci; 2013 Oct; 14(10):20171-88. PubMed ID: 24152435 [TBL] [Abstract][Full Text] [Related]
4. Unveiling the potential of TPA-based molecules to tune the optoelectronic properties and enhance the efficiency of dye-sensitized solar cells. Al-Atawi FH; Irfan A; Al-Sehemi AG J Mol Model; 2024 Jun; 30(7):197. PubMed ID: 38836952 [TBL] [Abstract][Full Text] [Related]
5. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) Study. Kang GJ; Song C; Ren XF Molecules; 2016 Nov; 21(12):. PubMed ID: 27897999 [TBL] [Abstract][Full Text] [Related]
6. Zinc-porphyrin based dyes for dye-sensitized solar cells. Karthikeyan S; Lee JY J Phys Chem A; 2013 Oct; 117(42):10973-9. PubMed ID: 24090130 [TBL] [Abstract][Full Text] [Related]
7. Theoretical Study of Effect of Introducing Lee GH; Kim YS J Nanosci Nanotechnol; 2018 Sep; 18(9):6640-6644. PubMed ID: 29677850 [TBL] [Abstract][Full Text] [Related]
8. Theoretical screening of novel alkyne bridged zinc porphyrins as sensitizer candidates for dye-sensitized solar cells. Zhang X; Du Y; Chen Q; Sun H; Pan T; Hu G; Ma R; Sun Y; Li D; Dou J; Pan X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():514-20. PubMed ID: 24983919 [TBL] [Abstract][Full Text] [Related]
9. Molecular Design of Porphyrins for Dye-Sensitized Solar Cells: A DFT/TDDFT Study. Santhanamoorthi N; Lo CM; Jiang JC J Phys Chem Lett; 2013 Feb; 4(3):524-30. PubMed ID: 26281749 [TBL] [Abstract][Full Text] [Related]
10. Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells. Syu YK; Tingare Y; Lin SY; Yeh CY; Wu JJ Molecules; 2016 Aug; 21(8):. PubMed ID: 27527136 [TBL] [Abstract][Full Text] [Related]
11. Effect of regio-specific arylamine substitution on novel π-extended zinc salophen complexes: density functional and time-dependent density functional study on DSSC applications. Liao JM; Chin YK; Wu YT; Chou HH RSC Adv; 2023 Jan; 13(4):2501-2513. PubMed ID: 36741182 [TBL] [Abstract][Full Text] [Related]
12. N-annulated perylene as an efficient electron donor for porphyrin-based dyes: enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells. Luo J; Xu M; Li R; Huang KW; Jiang C; Qi Q; Zeng W; Zhang J; Chi C; Wang P; Wu J J Am Chem Soc; 2014 Jan; 136(1):265-72. PubMed ID: 24345083 [TBL] [Abstract][Full Text] [Related]
13. Molecular Docking toward Panchromatic Dye Sensitizers for Solar Cells Based upon Tetraazulenylporphyrin and Tetraanthracenylporphyrin. Zhang CR; Li XY; Shen YL; Wu YZ; Liu ZJ; Chen HS J Phys Chem A; 2017 Apr; 121(13):2655-2664. PubMed ID: 28319383 [TBL] [Abstract][Full Text] [Related]
14. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related]
15. Porphyrin Sensitizers Bearing a Pyridine-Type Anchoring Group for Dye-Sensitized Solar Cells. Mai CL; Moehl T; Hsieh CH; Décoppet JD; Zakeeruddin SM; Grätzel M; Yeh CY ACS Appl Mater Interfaces; 2015 Jul; 7(27):14975-82. PubMed ID: 26083949 [TBL] [Abstract][Full Text] [Related]
16. Effects of Bulky Substituents of Push-Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells. Higashino T; Kawamoto K; Sugiura K; Fujimori Y; Tsuji Y; Kurotobi K; Ito S; Imahori H ACS Appl Mater Interfaces; 2016 Jun; 8(24):15379-90. PubMed ID: 27267428 [TBL] [Abstract][Full Text] [Related]
17. Performance Regulation of Thieno[3,2-b]benzothiophene π-Spacer-Based D-π-A Organic Dyes for Dye-Sensitized Solar Cell Applications: Insights From Computational Study. Xie X; Liu ZH; Bai FQ; Zhang HX Front Chem; 2018; 6():676. PubMed ID: 30761288 [TBL] [Abstract][Full Text] [Related]
18. Theoretical screening of promising donor and π-linker groups for POM-based Zn-porphyrin dyes in dye-sensitized solar cells. Gao Y; Guan W; Yan L; Xu Y Phys Chem Chem Phys; 2019 Feb; 21(7):3822-3831. PubMed ID: 30698177 [TBL] [Abstract][Full Text] [Related]
19. Computational Investigation of Tuning the Electron-Donating Ability in Metal-Free Organic Dyes Featuring an Azobenzene Spacer for Dye-Sensitized Solar Cells. Rashid MAM; Hayati D; Kwak K; Hong J Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30669414 [TBL] [Abstract][Full Text] [Related]
20. Electronic and optical properties of dye-sensitized TiO₂ interfaces. Pastore M; Selloni A; Fantacci S; De Angelis F Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]