BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34549154)

  • 1. Prediction Model of Clearance by a Novel Quantitative Structure-Activity Relationship Approach, Combination DeepSnap-Deep Learning and Conventional Machine Learning.
    Mamada H; Nomura Y; Uesawa Y
    ACS Omega; 2021 Sep; 6(36):23570-23577. PubMed ID: 34549154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel QSAR Approach for a Regression Model of Clearance That Combines DeepSnap-Deep Learning and Conventional Machine Learning.
    Mamada H; Nomura Y; Uesawa Y
    ACS Omega; 2022 May; 7(20):17055-17062. PubMed ID: 35647436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive Models Based on Molecular Images and Molecular Descriptors for Drug Screening.
    Mamada H; Takahashi M; Ogino M; Nomura Y; Uesawa Y
    ACS Omega; 2023 Oct; 8(40):37186-37195. PubMed ID: 37841172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepSnap-Deep Learning Approach Predicts Progesterone Receptor Antagonist Activity With High Performance.
    Matsuzaka Y; Uesawa Y
    Front Bioeng Biotechnol; 2019; 7():485. PubMed ID: 32039185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap-Deep Learning.
    Matsuzaka Y; Hosaka T; Ogaito A; Yoshinari K; Uesawa Y
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32183141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Molecular Image-Based Novel Quantitative Structure-Activity Relationship Approach, Deepsnap-Deep Learning and Machine Learning.
    Matsuzaka Y; Uesawa Y
    Curr Issues Mol Biol; 2021; 42():455-472. PubMed ID: 33339777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a Deep-Learning Method Based on the Classification of Images Generated by Parameterized Deep Snap a Novel Molecular-Image-Input Technique for Quantitative Structure-Activity Relationship (QSAR) Analysis.
    Matsuzaka Y; Uesawa Y
    Front Bioeng Biotechnol; 2019; 7():65. PubMed ID: 30984753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library.
    Matsuzaka Y; Uesawa Y
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32549344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library.
    Matsuzaka Y; Uesawa Y
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31574921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Learning-Based Quantitative Structure-Activity Relationship System Construct Prediction Model of Agonist and Antagonist with High Performance.
    Matsuzaka Y; Uesawa Y
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction Models for Agonists and Antagonists of Molecular Initiation Events for Toxicity Pathways Using an Improved Deep-Learning-Based Quantitative Structure-Activity Relationship System.
    Matsuzaka Y; Totoki S; Handa K; Shiota T; Kurosaki K; Uesawa Y
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensemble Learning, Deep Learning-Based and Molecular Descriptor-Based Quantitative Structure-Activity Relationships.
    Matsuzaka Y; Uesawa Y
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning-based approach to ERα bioactivity and drug ADMET prediction.
    An T; Chen Y; Chen Y; Ma L; Wang J; Zhao J
    Front Genet; 2022; 13():1087273. PubMed ID: 36685926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting ensemble learning to improve prediction of phospholipidosis inducing potential.
    Nath A; Sahu GK
    J Theor Biol; 2019 Oct; 479():37-47. PubMed ID: 31310757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches.
    Weng SF; Vaz L; Qureshi N; Kai J
    PLoS One; 2019; 14(3):e0214365. PubMed ID: 30917171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using In Vitro Assay.
    Kosugi Y; Hosea N
    Mol Pharm; 2020 Jul; 17(7):2299-2309. PubMed ID: 32478525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergency department triage prediction of clinical outcomes using machine learning models.
    Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K
    Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling.
    Lei T; Li Y; Song Y; Li D; Sun H; Hou T
    J Cheminform; 2016; 8():6. PubMed ID: 26839598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.