These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34549316)

  • 1. Chemogenetic modulation reveals distinct roles of the subthalamic nucleus and its afferents in the regulation of locomotor sensitization to amphetamine in rats.
    Nakata KG; Yin E; Sutlief E; Ferguson SM
    Psychopharmacology (Berl); 2022 Feb; 239(2):353-364. PubMed ID: 34549316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticostriatal Afferents Modulate Responsiveness to Psychostimulant Drugs and Drug-Associated Stimuli.
    Kerstetter KA; Wunsch AM; Nakata KG; Donckels E; Neumaier JF; Ferguson SM
    Neuropsychopharmacology; 2016 Mar; 41(4):1128-37. PubMed ID: 26289144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination of the Cortico-Subthalamic Hyperdirect Pathway Induces Motor Hyperactivity in Mice.
    Koketsu D; Chiken S; Hisatsune T; Miyachi S; Nambu A
    J Neurosci; 2021 Jun; 41(25):5502-5510. PubMed ID: 34001630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventral Pallidum Output Pathways in Context-Induced Reinstatement of Alcohol Seeking.
    Prasad AA; McNally GP
    J Neurosci; 2016 Nov; 36(46):11716-11726. PubMed ID: 27852779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry.
    Joel D; Weiner I
    Brain Res Brain Res Rev; 1997 Feb; 23(1-2):62-78. PubMed ID: 9063587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical Control of Subthalamic Neuronal Activity through the Hyperdirect and Indirect Pathways in Monkeys.
    Polyakova Z; Chiken S; Hatanaka N; Nambu A
    J Neurosci; 2020 Sep; 40(39):7451-7463. PubMed ID: 32847963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G protein-coupled receptor signaling in VTA dopaminergic neurons bidirectionally regulates the acute locomotor response to amphetamine but does not affect behavioral sensitization.
    Runegaard AH; Dencker D; Wörtwein G; Gether U
    Neuropharmacology; 2019 Dec; 161():107663. PubMed ID: 31173760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence.
    Beloate LN; Omrani A; Adan RA; Webb IC; Coolen LM
    J Neurosci; 2016 Sep; 36(38):9949-61. PubMed ID: 27656032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the cortico-nigral circuits.
    Maurice N; Deniau JM; Glowinski J; Thierry AM
    J Neurosci; 1999 Jun; 19(11):4674-81. PubMed ID: 10341265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortico-subthalamic inputs from the motor, limbic, and associative areas in normal and dopamine-depleted rats are not fully segregated.
    Janssen MLF; Temel Y; Delaville C; Zwartjes DGM; Heida T; De Deurwaerdère P; Visser-Vandewalle V; Benazzouz A
    Brain Struct Funct; 2017 Aug; 222(6):2473-2485. PubMed ID: 28013397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of c-fos mRNA in the basal ganglia associated with contingent tolerance to amphetamine-induced hypophagia.
    Bachand KD; Guthrie KM; Wolgin DL
    Behav Brain Res; 2009 Mar; 198(2):388-96. PubMed ID: 19084559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior.
    Barbier M; Chometton S; Pautrat A; Miguet-Alfonsi C; Datiche F; Gascuel J; Fellmann D; Peterschmitt Y; Coizet V; Risold PY
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15967-15976. PubMed ID: 32571909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus.
    Lanciego JL; Gonzalo N; Castle M; Sanchez-Escobar C; Aymerich MS; Obeso JA
    Eur J Neurosci; 2004 Mar; 19(5):1267-77. PubMed ID: 15016084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Globus pallidus lesions depress the excitatory responses to apomorphine but not amphetamine in the subthalamic nucleus of the behaving rat with a 6-OHDA nigra lesion.
    Olds ME; Jacques DB; Kopyov O
    Brain Res; 1998 Nov; 812(1-2):50-64. PubMed ID: 9813239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term plasticity of glutamatergic input from the subthalamic nucleus to the entopeduncular nucleus.
    Gorodetski L; Zeira R; Lavian H; Korngreen A
    Eur J Neurosci; 2018 Sep; 48(5):2139-2151. PubMed ID: 30103273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subthalamic responses to amphetamine and apomorphine in the behaving rat with a unilateral 6-OHDA lesion in the substantia nigra.
    Olds ME; Jacques DB; Kopyov O
    Synapse; 1999 Dec; 34(3):228-40. PubMed ID: 10523760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent Prelimbic Cortical Pathways Interact with BDNF to Regulate Cocaine-seeking.
    Giannotti G; Barry SM; Siemsen BM; Peters J; McGinty JF
    J Neurosci; 2018 Oct; 38(42):8956-8966. PubMed ID: 30185459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preservation of the hyperdirect pathway of basal ganglia in a rodent brain slice.
    Bosch C; Mailly P; Degos B; Deniau JM; Venance L
    Neuroscience; 2012 Jul; 215():31-41. PubMed ID: 22537846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata.
    Kolomiets BP; Deniau JM; Glowinski J; Thierry AM
    Neuroscience; 2003; 117(4):931-8. PubMed ID: 12654344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons.
    Chu HY; McIver EL; Kovaleski RF; Atherton JF; Bevan MD
    Neuron; 2017 Sep; 95(6):1306-1318.e5. PubMed ID: 28910619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.