These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34549443)

  • 1. Radial basis function interpolation supplemented lattice Boltzmann method for electroosmotic flows in microchannel.
    Guo P; Qian F; Zhang W; Yan H; Wang Q; Zhao C
    Electrophoresis; 2021 Nov; 42(21-22):2171-2181. PubMed ID: 34549443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of fluid flow in a body-fitted grid system using the lattice Boltzmann method.
    Mirzaei M; Poozesh A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063312. PubMed ID: 23848811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials.
    Tian F; Li B; Kwok DY
    Langmuir; 2005 Feb; 21(3):1126-31. PubMed ID: 15667199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres.
    Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling electrokinetics in ionic liquids.
    Wang C; Bao J; Pan W; Sun X
    Electrophoresis; 2017 Jul; 38(13-14):1693-1705. PubMed ID: 28314048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully coupled hybrid lattice Boltzmann and finite difference method-based study of transient electrokinetic flows.
    Basu HS; Bahga SS; Kondaraju S
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200423. PubMed ID: 33223942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic flow through a microparallel channel with 3D wall roughness.
    Chang L; Jian Y; Buren M; Sun Y
    Electrophoresis; 2016 Feb; 37(3):482-92. PubMed ID: 26333852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution.
    Chang CC; Kuo CY; Wang CY
    Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls.
    Alizadeh A; Zhang L; Wang M
    J Colloid Interface Sci; 2014 Oct; 431():50-63. PubMed ID: 24984071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of electroosmotic flow with step change in zeta potential.
    Fu LM; Lin JY; Yang RJ
    J Colloid Interface Sci; 2003 Feb; 258(2):266-75. PubMed ID: 12618096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
    Zhao C; Yang C
    Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels.
    Park HM; Lee JS; Kim TW
    J Colloid Interface Sci; 2007 Nov; 315(2):731-9. PubMed ID: 17681522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
    Wang M; Wang J; Chen S; Pan N
    J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit.
    Mei L; Zhang H; Meng H; Qian S
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations.
    Obliger A; Duvail M; Jardat M; Coelho D; Békri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013019. PubMed ID: 23944561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traveling wave electroosmosis: the influence of electrode array geometry.
    Hrdlička J; Patel NS; Snita D
    Electrophoresis; 2014 Jul; 35(12-13):1790-4. PubMed ID: 24723297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.