BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34549626)

  • 21. Plasticity of pre- and postsynaptic GABAB receptor function in the paraventricular nucleus in spontaneously hypertensive rats.
    Li DP; Yang Q; Pan HM; Pan HL
    Am J Physiol Heart Circ Physiol; 2008 Aug; 295(2):H807-15. PubMed ID: 18567709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypertension and exercise training differentially affect oxytocin and oxytocin receptor expression in the brain.
    Martins AS; Crescenzi A; Stern JE; Bordin S; Michelini LC
    Hypertension; 2005 Oct; 46(4):1004-9. PubMed ID: 16157794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension.
    Li DP; Pan HL
    Hypertension; 2007 Apr; 49(4):916-25. PubMed ID: 17309953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Training-Induced Deactivation of the AT
    da Costa TSR; Masson GS; Eichler RADS; Silva JCS; Lacchini S; Michelini LC
    Circ J; 2020 Jul; 84(8):1294-1303. PubMed ID: 32522899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Burns Impair Blood-Brain Barrier and Mesenchymal Stem Cells Can Reverse the Process in Mice.
    Yang J; Ma K; Zhang C; Liu Y; Liang F; Hu W; Bian X; Yang S; Fu X
    Front Immunol; 2020; 11():578879. PubMed ID: 33240266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peripheral chemoreceptors mediate training-induced plasticity in paraventricular nucleus pre-autonomic oxytocinergic neurons.
    Cruz JC; Cavalleri MT; Ceroni A; Michelini LC
    Exp Physiol; 2013 Feb; 98(2):386-96. PubMed ID: 22872656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time course of hyperosmolar opening of the blood-brain and blood-CSF barriers in spontaneously hypertensive rats.
    Al-Sarraf H; Ghaaedi F; Redzic Z
    J Vasc Res; 2007; 44(2):99-109. PubMed ID: 17191032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The essential role of hypothalamic paraventricular nucleus nNOS in the modulation of autonomic control in exercised rats.
    Raquel HA; Ferreira NZ; Lucchetti BFC; Falquetto B; Pinge-Filho P; Michelini LC; Martins-Pinge MC
    Nitric Oxide; 2018 Sep; 79():14-24. PubMed ID: 29983399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-dependent effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative stress and inflammation and baroreflex sensitivity.
    Masson GS; Costa TS; Yshii L; Fernandes DC; Soares PP; Laurindo FR; Scavone C; Michelini LC
    PLoS One; 2014; 9(5):e94927. PubMed ID: 24788542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic depression of hypothalamic paraventricular neuronal activity produces sustained hypotension in hypertensive rats.
    Geraldes V; Gonçalves-Rosa N; Liu B; Paton JF; Rocha I
    Exp Physiol; 2014 Jan; 99(1):89-100. PubMed ID: 24142454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress.
    Yu XJ; Zhang DM; Jia LL; Qi J; Song XA; Tan H; Cui W; Chen W; Zhu GQ; Qin DN; Kang YM
    Toxicol Appl Pharmacol; 2015 May; 284(3):315-22. PubMed ID: 25759242
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Chen XY; Lin C; Liu GY; Pei C; Xu GQ; Gao L; Wang SZ; Pan YX
    J Appl Physiol (1985); 2022 Jun; 132(6):1460-1467. PubMed ID: 35546127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apelin-13 and APJ in paraventricular nucleus contribute to hypertension via sympathetic activation and vasopressin release in spontaneously hypertensive rats.
    Zhang F; Sun HJ; Xiong XQ; Chen Q; Li YH; Kang YM; Wang JJ; Gao XY; Zhu GQ
    Acta Physiol (Oxf); 2014 Sep; 212(1):17-27. PubMed ID: 24995933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting Hypertension: Superoxide Anions are Involved in Apelininduced Long-term High Blood Pressure and Sympathetic Activity in the Paraventricular Nucleus.
    Ji M; Wang Q; Zhao Y; Shi L; Zhou Z; Li Y
    Curr Neurovasc Res; 2019; 16(5):455-464. PubMed ID: 31657686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats.
    Song XA; Jia LL; Cui W; Zhang M; Chen W; Yuan ZY; Guo J; Li HH; Zhu GQ; Liu H; Kang YM
    Toxicol Appl Pharmacol; 2014 Nov; 281(1):101-8. PubMed ID: 25223692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise Training Attenuates Sympathetic Activity and Improves Morphometry of Splenic Arterioles in Spontaneously Hipertensive Rats.
    Lemos MP; Mota GRD; Marocolo M; Sordi CC; Chriguer RS; Barbosa Neto O
    Arq Bras Cardiol; 2018 Mar; 110(3):263-269. PubMed ID: 29694556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown.
    Nag S; Venugopalan R; Stewart DJ
    Acta Neuropathol; 2007 Nov; 114(5):459-69. PubMed ID: 17687559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcitriol ameliorated autonomic dysfunction and hypertension by down-regulating inflammation and oxidative stress in the paraventricular nucleus of SHR.
    Xu ML; Yu XJ; Zhao JQ; Du Y; Xia WJ; Su Q; Du MM; Yang Q; Qi J; Li Y; Zhou SW; Zhu GQ; Li HB; Kang YM
    Toxicol Appl Pharmacol; 2020 May; 394():114950. PubMed ID: 32147540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endogenous casein kinase-1 modulates NMDA receptor activity of hypothalamic presympathetic neurons and sympathetic outflow in hypertension.
    Li DP; Zhou JJ; Pan HL
    J Physiol; 2015 Oct; 593(19):4439-52. PubMed ID: 26174743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood-brain barrier endothelial cells.
    Lippoldt A; Kniesel U; Liebner S; Kalbacher H; Kirsch T; Wolburg H; Haller H
    Brain Res; 2000 Dec; 885(2):251-61. PubMed ID: 11102579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.