These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34549626)

  • 41. Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway.
    Sun HJ; Chen D; Han Y; Zhou YB; Wang JJ; Chen Q; Li YH; Gao XY; Kang YM; Zhu GQ
    Neuropharmacology; 2016 Apr; 103():247-56. PubMed ID: 26746861
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier.
    Biancardi VC; Son SJ; Ahmadi S; Filosa JA; Stern JE
    Hypertension; 2014 Mar; 63(3):572-9. PubMed ID: 24343120
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein kinase CK2 contributes to diminished small conductance Ca2+-activated K+ channel activity of hypothalamic pre-sympathetic neurons in hypertension.
    Pachuau J; Li DP; Chen SR; Lee HA; Pan HL
    J Neurochem; 2014 Sep; 130(5):657-67. PubMed ID: 24806793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exercise training improves cardiovascular control in sinoaortic denervated SHR by reducing the elevated angiotensin II and augmenting angiotensin-(1-7) availability within autonomic and neuroendocrine PVN nuclei.
    Raquel HA; Manica LA; Ceroni A; Michelini LC
    Peptides; 2022 Jul; 153():170798. PubMed ID: 35405300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Central administration of tert-butylhydroquinone attenuates hypertension via regulating Nrf2 signaling in the hypothalamic paraventricular nucleus of hypertensive rats.
    Bai J; Yu XJ; Liu KL; Wang FF; Jing GX; Li HB; Zhang Y; Huo CJ; Li X; Gao HL; Qi J; Kang YM
    Toxicol Appl Pharmacol; 2017 Oct; 333():100-109. PubMed ID: 28842207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hypothalamic Corticotropin-Releasing Hormone Contributes to Hypertension in Spontaneously Hypertensive Rats.
    Zhang H; Zhou JJ; Shao JY; Sheng ZF; Wang J; Zheng P; Kang X; Liu Z; Cheng ZJ; Kline DD; Li DP
    J Neurosci; 2023 Jun; 43(24):4513-4524. PubMed ID: 37160364
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superoxide anions modulate the performance of apelin in the paraventricular nucleus on sympathetic activity and blood pressure in spontaneously hypertensive rats.
    Zhao Y; Li Y; Li Z; Xu B; Chen P; Yang X
    Peptides; 2019 Nov; 121():170051. PubMed ID: 30582943
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TLR4 and AT1R mediate blood-brain barrier disruption, neuroinflammation, and autonomic dysfunction in spontaneously hypertensive rats.
    Mowry FE; Peaden SC; Stern JE; Biancardi VC
    Pharmacol Res; 2021 Dec; 174():105877. PubMed ID: 34610452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pre- and postsynaptic plasticity underlying augmented glutamatergic inputs to hypothalamic presympathetic neurons in spontaneously hypertensive rats.
    Li DP; Yang Q; Pan HM; Pan HL
    J Physiol; 2008 Mar; 586(6):1637-47. PubMed ID: 18238817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Training-induced pressure fall in spontaneously hypertensive rats is associated with reduced angiotensinogen mRNA expression within the nucleus tractus solitarii.
    Felix JV; Michelini LC
    Hypertension; 2007 Oct; 50(4):780-5. PubMed ID: 17646572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension.
    Dange RB; Agarwal D; Teruyama R; Francis J
    J Neuroinflammation; 2015 Feb; 12():31. PubMed ID: 25879545
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension.
    Li DP; Pan HL
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1110-9. PubMed ID: 16243912
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA demethylation in the hypothalamus promotes transcription of Agtr1a and Slc12a2 and hypertension development.
    Ghosh K; Zhou JJ; Shao JY; Chen SR; Pan HL
    J Biol Chem; 2024 Feb; 300(2):105597. PubMed ID: 38160798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability.
    Harati R; Hammad S; Tlili A; Mahfood M; Mabondzo A; Hamoudi R
    PLoS One; 2022; 17(1):e0262152. PubMed ID: 35025943
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exercise training causes skeletal muscle venular growth and alters hemodynamic responses in spontaneously hypertensive rats.
    Amaral SL; Silveira NP; Zorn TM; Michelini LC
    J Hypertens; 2001 May; 19(5):931-40. PubMed ID: 11393677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury.
    Yang Y; Kimura-Ohba S; Thompson JF; Salayandia VM; Cossé M; Raz L; Jalal FY; Rosenberg GA
    Neurobiol Dis; 2018 Jun; 114():95-110. PubMed ID: 29486300
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Is gender crucial for cardiovascular adjustments induced by exercise training in female spontaneously hypertensive rats?
    Coimbra R; Sanchez LS; Potenza JM; Rossoni LV; Amaral SL; Michelini LC
    Hypertension; 2008 Sep; 52(3):514-21. PubMed ID: 18695147
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Artificial microRNA interference targeting AT(1a) receptors in paraventricular nucleus attenuates hypertension in rats.
    Fan ZD; Zhang L; Shi Z; Gan XB; Gao XY; Zhu GQ
    Gene Ther; 2012 Aug; 19(8):810-7. PubMed ID: 21956687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines.
    Yi QY; Li HB; Qi J; Yu XJ; Huo CJ; Li X; Bai J; Gao HL; Kou B; Liu KL; Zhang DD; Chen WS; Cui W; Zhu GQ; Shi XL; Kang YM
    Toxicol Lett; 2016 Nov; 262():105-113. PubMed ID: 27659729
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spreading depolarizations trigger caveolin-1-dependent endothelial transcytosis.
    Sadeghian H; Lacoste B; Qin T; Toussay X; Rosa R; Oka F; Chung DY; Takizawa T; Gu C; Ayata C
    Ann Neurol; 2018 Sep; 84(3):409-423. PubMed ID: 30014540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.