These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34549669)

  • 21. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multivariable optimization of cycling biomechanics.
    Gonzalez H; Hull ML
    J Biomech; 1989; 22(11-12):1151-61. PubMed ID: 2625415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet: The role of physical fatigue.
    Jafarnezhadgero A; Alavi-Mehr SM; Granacher U
    PLoS One; 2019; 14(5):e0216818. PubMed ID: 31086402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gender differences in frontal and sagittal plane biomechanics during drop landings.
    Kernozek TW; Torry MR; VAN Hoof H; Cowley H; Tanner S
    Med Sci Sports Exerc; 2005 Jun; 37(6):1003-12; discussion 1013. PubMed ID: 15947726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in pedalling technique between road cyclists of different competitive levels.
    García-López J; Díez-Leal S; Ogueta-Alday A; Larrazabal J; Rodríguez-Marroyo JA
    J Sports Sci; 2016 Sep; 34(17):1619-26. PubMed ID: 26703374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variations of ankle-foot orthosis-constrained movements increase ankle range of movement while maintaining power output of recumbent cycling.
    Hamdan PNF; Hamzaid NA; Usman J; Islam MA; Kean VSP; Wahab AKA; Hasnan N; Davis GM
    Biomed Tech (Berl); 2018 Nov; 63(6):691-697. PubMed ID: 28915105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Medial and Lateral Tibiofemoral Compressive Forces in Patients Following Unilateral Total Knee Arthroplasty During Stationary Cycling.
    Hummer ET; Thorsen T; Weinhandl JT; Reinbolt JA; Cates H; Zhang S
    J Appl Biomech; 2022 Jun; 38(3):179-189. PubMed ID: 35588765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence.
    Sanderson DJ; Martin PE; Honeyman G; Keefer J
    J Electromyogr Kinesiol; 2006 Dec; 16(6):642-9. PubMed ID: 16377214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanics of recumbent cycling in adolescents with cerebral palsy with and without the use of a fixed shank guide.
    Johnston TE; Barr AE; Lee SC
    Gait Posture; 2008 May; 27(4):539-46. PubMed ID: 17689963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Knee loads in the standard and recumbent cycling positions.
    Reiser RF; Broker JP; Peterson ML
    Biomed Sci Instrum; 2004; 40():36-42. PubMed ID: 15133932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of saddle setback on knee joint forces in cycling.
    Menard M; Domalain M; Decatoire A; Lacouture P
    Sports Biomech; 2020 Apr; 19(2):245-257. PubMed ID: 29920153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specificity of recumbent cycling as a training modality for the functional movements; sit-to-stand and step-up.
    Kerr A; Rafferty D; Moffat F; Morlan G
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1104-11. PubMed ID: 17854957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of seat positions on discomfort, muscle activation, pressure distribution and pedal force during cycling.
    Verma R; Hansen EA; de Zee M; Madeleine P
    J Electromyogr Kinesiol; 2016 Apr; 27():78-86. PubMed ID: 26938676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.
    Kobayashi T; Singer ML; Orendurff MS; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):775-80. PubMed ID: 26149007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of increased step width on frontal plane knee biomechanics in healthy older adults during stair descent.
    Paquette MR; Zhang S; Milner CE; Fairbrother JT; Reinbolt JA
    Knee; 2014 Aug; 21(4):821-6. PubMed ID: 24767736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acute effects of small changes in antero-posterior shoe-cleat position on physiological and biomechanical variables in road cycling.
    Chartogne M; Millour G; García-López J; Duc S; Rodríguez-Marroyo JA; Pernía R; Bertucci W
    Sports Biomech; 2023 Apr; 22(4):510-521. PubMed ID: 35129429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations.
    Hakansson NA; Hull ML
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Mechanics of Seated and Nonseated Cycling at Very-High-Power Output: A Joint-Level Analysis.
    Wilkinson RD; Lichtwark GA; Cresswell AG
    Med Sci Sports Exerc; 2020 Jul; 52(7):1585-1594. PubMed ID: 31996561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Individuals With Knee Osteoarthritis Demonstrate Interlimb Asymmetry in Pedaling Power During Stationary Cycling.
    Buddhadev HH; Crisafulli DL; Suprak DN; San Juan JG
    J Appl Biomech; 2018 Aug; 34(4):306-311. PubMed ID: 29543107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the relation between joint moments and pedalling rates at constant power in bicycling.
    Redfield R; Hull ML
    J Biomech; 1986; 19(4):317-29. PubMed ID: 3711132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.