These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34549933)

  • 1. Proteome-Wide Characterizations of
    Dong X; Sun J; Miao W; Chang CA; Wang Y
    Anal Chem; 2021 Oct; 93(39):13251-13259. PubMed ID: 34549933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Proteomic Approaches for Proteome-Wide Characterizations of the AMP-Binding Capacities of Kinases.
    Miao W; Yin J; Porter DF; Jiang X; Khavari PA; Wang Y
    J Proteome Res; 2022 Aug; 21(8):2063-2070. PubMed ID: 35820187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imatinib-Induced Changes in Protein Expression and ATP-Binding Affinities of Kinases in Chronic Myelocytic Leukemia Cells.
    Miao W; Guo L; Wang Y
    Anal Chem; 2019 Mar; 91(5):3209-3214. PubMed ID: 30773012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling and molecular dynamics simulation studies of the GSK3β/ATP/substrate complex: understanding the unique P+4 primed phosphorylation specificity for GSK3β substrates.
    Lu SY; Jiang YJ; Zou JW; Wu TX
    J Chem Inf Model; 2011 May; 51(5):1025-36. PubMed ID: 21495724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using chemical genetics and ATP analogues to dissect protein kinase function.
    Elphick LM; Lee SE; Gouverneur V; Mann DJ
    ACS Chem Biol; 2007 May; 2(5):299-314. PubMed ID: 17518431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues.
    Xiao Y; Guo L; Wang Y
    Mol Cell Proteomics; 2014 Apr; 13(4):1065-75. PubMed ID: 24520089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotope-coded ATP probe for quantitative affinity profiling of ATP-binding proteins.
    Xiao Y; Guo L; Wang Y
    Anal Chem; 2013 Aug; 85(15):7478-86. PubMed ID: 23841533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe.
    Adachi J; Kishida M; Watanabe S; Hashimoto Y; Fukamizu K; Tomonaga T
    J Proteome Res; 2014 Dec; 13(12):5461-70. PubMed ID: 25230287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Recognition of FDA-Approved Small Molecule Protein Kinase Drugs in Protein Kinases.
    Zhu Y; Hu X
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling protein kinases and other ATP binding proteins in Arabidopsis using Acyl-ATP probes.
    Villamor JG; Kaschani F; Colby T; Oeljeklaus J; Zhao D; Kaiser M; Patricelli MP; van der Hoorn RA
    Mol Cell Proteomics; 2013 Sep; 12(9):2481-96. PubMed ID: 23722185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Proteomic Profiling of Lysophosphatidic Acid-Binding Proteins.
    Dong X; Gao L; Song J; Wang Y
    Anal Chem; 2019 Dec; 91(24):15365-15369. PubMed ID: 31765128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An atlas of the catalytically active liver and spleen kinases in chicken identified by chemoproteomics.
    Nanduri B; Gresham CR; Hui WW; Ou M; Bailey RH; Edelmann MJ
    J Proteomics; 2020 Aug; 225():103850. PubMed ID: 32502695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of differentially expressed proteins by treatment with PUGNAc in 3T3-L1 adipocytes through analysis of ATP-binding proteome.
    Lee JE; Park JH; Moon PG; Baek MC
    Proteomics; 2013 Oct; 13(20):2998-3012. PubMed ID: 23946262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute proteome and phosphoproteome dynamics during the cell cycle of Schizosaccharomyces pombe (Fission Yeast).
    Carpy A; Krug K; Graf S; Koch A; Popic S; Hauf S; Macek B
    Mol Cell Proteomics; 2014 Aug; 13(8):1925-36. PubMed ID: 24763107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoproteomic characterization of protein kinase inhibitors using immobilized ATP.
    Duncan JS; Haystead TA; Litchfield DW
    Methods Mol Biol; 2012; 795():119-34. PubMed ID: 21960219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the substrate-binding properties of bovine liver adenosine kinase and inhibition by fluorescent nucleoside analogues.
    Pelicano H; Maury G; Elalaoui A; Shafiee M; Imbach JL; Goody RS; Divita G
    Eur J Biochem; 1997 Sep; 248(3):930-7. PubMed ID: 9342249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of adenine nucleotide derivatives to assess the potential of exo-active-site-directed reagents as species- or isozyme-specific enzyme inactivators. 4. Interactions of adenosine 5'-triphosphate derivatives with adenylate kinases from Escherichia coli and rat tissues.
    Hampton A; Picker D; Nealy KA; Maeda M
    J Med Chem; 1982 Apr; 25(4):382-6. PubMed ID: 6279845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome-wide discovery and characterizations of nucleotide-binding proteins with affinity-labeled chemical probes.
    Xiao Y; Guo L; Jiang X; Wang Y
    Anal Chem; 2013 Mar; 85(6):3198-206. PubMed ID: 23413923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity-Based Kinase-Catalyzed Crosslinking to Study Kinase-Substrate Pairs.
    Beltman RJ; Herppich AA; Bremer HJ; Pflum MKH
    Bioconjug Chem; 2023 Jun; 34(6):1054-1060. PubMed ID: 37279085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of extracellular signal-regulated kinase 1 (ERK1) direct substrates using stable isotope labeled kinase assay-linked phosphoproteomics.
    Xue L; Wang P; Cao P; Zhu JK; Tao WA
    Mol Cell Proteomics; 2014 Nov; 13(11):3199-210. PubMed ID: 25022875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.