These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34549950)

  • 1. Collision, Adhesion, and Oxidation of Single Ag Nanoparticles on a Polysulfide-Modified Microelectrode.
    Defnet PA; Zhang B
    J Am Chem Soc; 2021 Oct; 143(39):16154-16162. PubMed ID: 34549950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Detection and Analysis of Various Current Responses of a Single Ag Nanoparticle Collision in an Alkaline Electrolyte Solution.
    Kim KJ; Kwon SJ
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Single-Particle Collision Electrochemistry at Polysulfide-Functionalized Microelectrodes for SARS-CoV-2 Detection.
    Liu J; Jiang Y; Wen W; Zhang X; Wu Z; Wang S
    ACS Sens; 2023 May; 8(5):2011-2020. PubMed ID: 37083364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical solid-state phase transformations of silver nanoparticles.
    Singh P; Parent KL; Buttry DA
    J Am Chem Soc; 2012 Mar; 134(12):5610-7. PubMed ID: 22385520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.
    Thalmann B; Voegelin A; Sinnet B; Morgenroth E; Kaegi R
    Environ Sci Technol; 2014 May; 48(9):4885-92. PubMed ID: 24678586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.
    Levard C; Reinsch BC; Michel FM; Oumahi C; Lowry GV; Brown GE
    Environ Sci Technol; 2011 Jun; 45(12):5260-6. PubMed ID: 21598969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-controlled dissolution of organic-coated silver nanoparticles.
    Ma R; Levard C; Marinakos SM; Cheng Y; Liu J; Michel FM; Brown GE; Lowry GV
    Environ Sci Technol; 2012 Jan; 46(2):752-9. PubMed ID: 22142034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution.
    Martinolich AJ; Park G; Nakamoto MY; Gate RE; Wheeler KE
    Environ Sci Technol; 2012 Jun; 46(11):6355-62. PubMed ID: 22563882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein corona-induced extraction coupled to Fenton oxidation for selective and non-destructive preconcentration of Ag
    Li Y; Gao Y; Jia J; Deng Y; Zhang K; Yan B; Zhou X
    Water Res; 2022 Oct; 224():119042. PubMed ID: 36103778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision Oxidation Behavior of Silver Nanoparticles in Alkaline Solution.
    Xu Y; Sun AR; Liu HY; Zhang ZL
    J Phys Chem Lett; 2024 May; 15(21):5594-5599. PubMed ID: 38755539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs.
    Khoris IM; Takemura K; Lee J; Hara T; Abe F; Suzuki T; Park EY
    Biosens Bioelectron; 2019 Feb; 126():425-432. PubMed ID: 30471568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface.
    Hao R; Fan Y; Zhang B
    J Am Chem Soc; 2017 Sep; 139(35):12274-12282. PubMed ID: 28799330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current transients in single nanoparticle collision events.
    Xiao X; Fan FR; Zhou J; Bard AJ
    J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.