These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 34549950)
21. Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. An X; Long Y; Ni Y Carbohydr Polym; 2017 Jan; 156():253-258. PubMed ID: 27842820 [TBL] [Abstract][Full Text] [Related]
22. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621 [TBL] [Abstract][Full Text] [Related]
23. Size-selected silver nanoparticles for MALDI-TOF mass spectrometry of amyloid-beta peptides. Ding F; Qian Y; Deng Z; Zhang J; Zhou Y; Yang L; Wang F; Wang J; Zhou Z; Shen J Nanoscale; 2018 Nov; 10(46):22044-22054. PubMed ID: 30452045 [TBL] [Abstract][Full Text] [Related]
24. Electrochemical determination of nitrite using silver nanoparticles modified electrode. Pal M; Ganesan V Analyst; 2010 Oct; 135(10):2711-6. PubMed ID: 20714523 [TBL] [Abstract][Full Text] [Related]
25. Preparation and characterization of gelatin nanofibers containing silver nanoparticles. Jeong L; Park WH Int J Mol Sci; 2014 Apr; 15(4):6857-79. PubMed ID: 24758929 [TBL] [Abstract][Full Text] [Related]
26. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens. Dube P; Meyer S; Madiehe A; Meyer M Nanotechnology; 2020 Dec; 31(50):505607. PubMed ID: 33021215 [TBL] [Abstract][Full Text] [Related]
27. Chemical transformations of nanosilver in biological environments. Liu J; Wang Z; Liu FD; Kane AB; Hurt RH ACS Nano; 2012 Nov; 6(11):9887-99. PubMed ID: 23046098 [TBL] [Abstract][Full Text] [Related]
28. Green solid-state based curcumin mediated rhamnolipids stabilized silver nanoparticles: Interaction of silver nanoparticles with cystine and albumins towards fluorescence sensing. Sadeq Al-Namil D; Patra D Colloids Surf B Biointerfaces; 2019 Jan; 173():647-653. PubMed ID: 30368212 [TBL] [Abstract][Full Text] [Related]
29. Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice. Wu Y; Yang L; Gong H; Dang F; Zhou DM Environ Pollut; 2020 May; 260():113969. PubMed ID: 31991350 [TBL] [Abstract][Full Text] [Related]
30. Plasmonic imaging of electrochemical oxidation of single nanoparticles. Fang Y; Wang W; Wo X; Luo Y; Yin S; Wang Y; Shan X; Tao N J Am Chem Soc; 2014 Sep; 136(36):12584-7. PubMed ID: 25140732 [TBL] [Abstract][Full Text] [Related]
31. Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Shen L; Chen M; Hu L; Chen X; Wang J Langmuir; 2013 Dec; 29(52):16135-40. PubMed ID: 24308456 [TBL] [Abstract][Full Text] [Related]
32. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment. Wei WJ; Yang Y; Li XY; Huang P; Wang Q; Yang PJ Talanta; 2022 Mar; 239():123117. PubMed ID: 34890942 [TBL] [Abstract][Full Text] [Related]
33. Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles. Rezvani Amin Z; Khashyarmanesh Z; Fazly Bazzaz BS World J Microbiol Biotechnol; 2016 Sep; 32(9):140. PubMed ID: 27430507 [TBL] [Abstract][Full Text] [Related]
34. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425 [TBL] [Abstract][Full Text] [Related]
35. Three-layered silver nanoparticles to trace dissolution and association to a green alga. Ponton DE; Croteau MN; Luoma SN; Pourhoseini S; Merrifield RC; Lead JR Nanotoxicology; 2019 Nov; 13(9):1149-1160. PubMed ID: 31284796 [TBL] [Abstract][Full Text] [Related]
36. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342 [TBL] [Abstract][Full Text] [Related]
37. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode. Mirceski V; Gulaboski R J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890 [TBL] [Abstract][Full Text] [Related]
38. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms. Grün AY; Meier J; Metreveli G; Schaumann GE; Manz W Environ Sci Pollut Res Int; 2016 Dec; 23(23):24277-24288. PubMed ID: 27650851 [TBL] [Abstract][Full Text] [Related]
39. "Miswak" Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis. Shaik MR; Albalawi GH; Khan ST; Khan M; Adil SF; Kuniyil M; Al-Warthan A; Siddiqui MR; Alkhathlan HZ; Khan M Molecules; 2016 Nov; 21(11):. PubMed ID: 27827968 [TBL] [Abstract][Full Text] [Related]
40. The release of silver nanoparticles from commercial toothbrushes. Mackevica A; Olsson ME; Hansen SF J Hazard Mater; 2017 Jan; 322(Pt A):270-275. PubMed ID: 27045456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]