These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34550122)

  • 1. Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry.
    Ugata Y; Shigenobu K; Tatara R; Ueno K; Watanabe M; Dokko K
    Phys Chem Chem Phys; 2021 Oct; 23(38):21419-21436. PubMed ID: 34550122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes.
    Chen X; Zhang Q
    Acc Chem Res; 2020 Sep; 53(9):1992-2002. PubMed ID: 32883067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glyme-Li salt equimolar molten solvates with iodide/triiodide redox anions.
    Shigenobu K; Nakanishi A; Ueno K; Dokko K; Watanabe M
    RSC Adv; 2019 Jul; 9(39):22668-22675. PubMed ID: 35519483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvate Ionic Liquids for Li, Na, K, and Mg Batteries.
    Mandai T; Dokko K; Watanabe M
    Chem Rec; 2019 Apr; 19(4):708-722. PubMed ID: 30298986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-Assisted Li-Ion Transport and Structural Heterogeneity in Fluorinated Battery Electrolytes.
    Reddy TDN; Mallik BS
    J Phys Chem B; 2021 Sep; 125(37):10551-10561. PubMed ID: 34516128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.
    Chen F; Forsyth M
    Phys Chem Chem Phys; 2016 Jul; 18(28):19336-44. PubMed ID: 27375042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The underlying mechanism for reduction stability of organic electrolytes in lithium secondary batteries.
    Shen X; Li P; Liu X; Chen S; Ai X; Yang H; Cao Y
    Chem Sci; 2021 Jul; 12(26):9037-9041. PubMed ID: 34276932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates.
    Shigenobu K; Dokko K; Watanabe M; Ueno K
    Phys Chem Chem Phys; 2020 Jul; 22(27):15214-15221. PubMed ID: 32598420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Electrochemical Stability of Molten Li Salt Hydrate Electrolytes by the Addition of Divalent Cations.
    Kondou S; Nozaki E; Terada S; Thomas ML; Ueno K; Umebayashi Y; Dokko K; Watanabe M
    J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(35):20167-20175. PubMed ID: 30220955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li-S Battery.
    See KA; Wu HL; Lau KC; Shin M; Cheng L; Balasubramanian M; Gallagher KG; Curtiss LA; Gewirth AA
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34360-34371. PubMed ID: 27998132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.
    Cresce AV; Russell SM; Borodin O; Allen JA; Schroeder MA; Dai M; Peng J; Gobet MP; Greenbaum SG; Rogers RE; Xu K
    Phys Chem Chem Phys; 2016 Dec; 19(1):574-586. PubMed ID: 27918030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Electrochemical Stability Using the Eutectic Composition of a Ternary Molten Salt System for Highly Concentrated Electrolytes for Na-Ion Batteries.
    Hwang J; Sivasengaran AN; Yang H; Yamamoto H; Takeuchi T; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2538-2546. PubMed ID: 33400498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-concentration LiPF
    Ugata Y; Chen Y; Miyazaki S; Sasagawa S; Ueno K; Watanabe M; Dokko K
    Phys Chem Chem Phys; 2023 Nov; 25(43):29566-29575. PubMed ID: 37877335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly Solvating Electrolyte*.
    Yao YX; Chen X; Yan C; Zhang XQ; Cai WL; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4090-4097. PubMed ID: 32976693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?
    Ueno K; Yoshida K; Tsuchiya M; Tachikawa N; Dokko K; Watanabe M
    J Phys Chem B; 2012 Sep; 116(36):11323-31. PubMed ID: 22897246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Origin of the Reduced Reductive Stability of Ion-Solvent Complexes on Alkali and Alkaline Earth Metal Anodes.
    Chen X; Li HR; Shen X; Zhang Q
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16643-16647. PubMed ID: 30334312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles calculations of oxidation potentials of electrolytes in lithium-sulfur batteries and their variations with changes in environment.
    Han J; Balbuena PB
    Phys Chem Chem Phys; 2018 Jul; 20(27):18811-18827. PubMed ID: 29964286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the concentration polarisation in molten Li salts and borate-based Li ionic liquids.
    Shigenobu K; Philippi F; Tsuzuki S; Kokubo H; Dokko K; Watanabe M; Ueno K
    Phys Chem Chem Phys; 2023 Mar; 25(9):6970-6978. PubMed ID: 36804678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron-containing fullerene-based salts with cyclic carbonate solvents as electrolytes for Li-ion batteries and beyond.
    Giri P; Barath V S; Dhurua S; Maity S; Gazi R; Jana M
    Phys Chem Chem Phys; 2024 Mar; 26(12):9317-9328. PubMed ID: 38444289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.