BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34550439)

  • 21. Mitigating fungal contamination of cereals: The efficacy of microplasma-based far-UVC lamps against Aspergillus flavus and Fusarium graminearum.
    Jin Z; Wang YC
    Food Res Int; 2024 Aug; 190():114550. PubMed ID: 38945594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. o-Vanillin, a promising antifungal agent, inhibits Aspergillus flavus by disrupting the integrity of cell walls and cell membranes.
    Li Q; Zhu X; Xie Y; Zhong Y
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5147-5158. PubMed ID: 34086115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sub3 inhibits Aspergillus flavus growth by disrupting mitochondrial energy metabolism, and has potential biocontrol during peanut storage.
    Zhang W; Lv Y; Lv A; Wei S; Zhang S; Li C; Hu Y
    J Sci Food Agric; 2021 Jan; 101(2):486-496. PubMed ID: 32643802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifungal and antimycotoxigenic potency of Solanum torvum Swartz. leaf extract: isolation and identification of compound active against mycotoxigenic strains of Aspergillus flavus and Fusarium verticillioides.
    Abhishek RU; Thippeswamy S; Manjunath K; Mohana DC
    J Appl Microbiol; 2015 Dec; 119(6):1624-36. PubMed ID: 26394117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural food flavour (E)-2-hexenal, a potential antifungal agent, induces mitochondria-mediated apoptosis in Aspergillus flavus conidia via a ROS-dependent pathway.
    Ma W; Zhao L; Johnson ET; Xie Y; Zhang M
    Int J Food Microbiol; 2022 Jun; 370():109633. PubMed ID: 35313251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ( E)-2-Hexenal, as a Potential Natural Antifungal Compound, Inhibits Aspergillus flavus Spore Germination by Disrupting Mitochondrial Energy Metabolism.
    Ma W; Zhao L; Zhao W; Xie Y
    J Agric Food Chem; 2019 Jan; 67(4):1138-1145. PubMed ID: 30614691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of the antifungal protein PgAFP from Penicillium chrysogenum on the protein profile in Aspergillus flavus.
    Delgado J; Owens RA; Doyle S; Asensio MA; Núñez F
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8701-15. PubMed ID: 26078108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory effect and possible mechanism of phenyllactic acid on Aspergillus flavus spore germination.
    Li M; Yao B; Meng X
    J Basic Microbiol; 2022 Dec; 62(12):1457-1466. PubMed ID: 35925551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antifungal mechanisms of binary combinations of volatile organic compounds produced by lactic acid bacteria strains against Aspergillusflavus.
    Zhang Y; Li B; Fu M; Wang Z; Chen K; Du M; Zalán Z; Hegyi F; Kan J
    Toxicon; 2024 May; 243():107749. PubMed ID: 38710308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus.
    Hu Y; Zhang J; Kong W; Zhao G; Yang M
    Food Chem; 2017 Apr; 220():1-8. PubMed ID: 27855875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of mitochondrial farnesyltransferase gene in the prevention of the food spoilage fungi Aspergillus flavus by the antimicrobial natural preservative perillaldehyde.
    Zhuo Q; Shi C; Geng Q; Wang S; Wang B; Zhang N; Yang K; Tian J
    Food Microbiol; 2024 Apr; 118():104422. PubMed ID: 38049276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficacy of Mentha spicata essential oil in suppression of Aspergillus flavus and aflatoxin contamination in chickpea with particular emphasis to mode of antifungal action.
    Kedia A; Dwivedy AK; Jha DK; Dubey NK
    Protoplasma; 2016 May; 253(3):647-653. PubMed ID: 26338202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Molecular Mechanism of Perillaldehyde Inducing Cell Death in
    Pan C; Li YX; Yang K; Famous E; Ma Y; He X; Geng Q; Liu M; Tian J
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of tea (Camellia sinensis L.) flower extract and insights into its antifungal susceptibilities of Aspergillus flavus.
    Chen F; Chen YP; Wu H; Li Y; Zhang S; Ke J; Yao JY
    BMC Complement Med Ther; 2023 Aug; 23(1):286. PubMed ID: 37580785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protection of postharvest grains from fungal spoilage by biogenic volatiles.
    Duan WY; Zhang SB; Lei JD; Qin YL; Li YN; Lv YY; Zhai HC; Cai JP; Hu YS
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3375-3390. PubMed ID: 37115251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.
    Chang PK; Hua SS; Sarreal SB; Li RW
    Toxins (Basel); 2015 Sep; 7(10):3887-902. PubMed ID: 26404375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative proteomics reveals new insights into calcium-mediated resistance mechanisms in Aspergillus flavus against the antifungal protein PgAFP in cheese.
    Delgado J; Owens RA; Doyle S; Núñez F; Asensio MA
    Food Microbiol; 2017 Sep; 66():1-10. PubMed ID: 28576356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antifungal activity and mechanism of action of 2-chloro-N -phenylacetamide: a new molecule with activity against strains of Aspergillus flavus.
    Ferreira ES; Cordeiro LV; Silva DF; Souza HDS; Athayde-Filho PF; Barbosa-Filho JM; Scotti L; Lima EO; Castro RD
    An Acad Bras Cienc; 2021; 93(suppl 3):e20200997. PubMed ID: 34550200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of short-synthetic antifungal peptides on pathogenic Aspergillus flavus.
    Manju Devi S; Raj N; Sashidhar RB
    Pestic Biochem Physiol; 2021 May; 174():104810. PubMed ID: 33838711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production.
    Yang M; Lu L; Pang J; Hu Y; Guo Q; Li Z; Wu S; Liu H; Wang C
    J Microbiol; 2019 May; 57(5):396-404. PubMed ID: 31062286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.