These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34550465)

  • 21. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures.
    Watanabe A; Matsuda H
    Health Care Manag Sci; 2023 Mar; 26(1):46-61. PubMed ID: 36203115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Outbreaks in susceptible-infected-removed epidemics with multiple seeds.
    Hasegawa T; Nemoto K
    Phys Rev E; 2016 Mar; 93(3):032324. PubMed ID: 27078383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A stochastic SIR network epidemic model with preventive dropping of edges.
    Ball F; Britton T; Leung KY; Sirl D
    J Math Biol; 2019 May; 78(6):1875-1951. PubMed ID: 30868213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling epidemics with fractional-dose vaccination in response to limited vaccine supply.
    Chen Z; Liu K; Liu X; Lou Y
    J Theor Biol; 2020 Feb; 486():110085. PubMed ID: 31758966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal Allocation of Vaccine and Antiviral Drugs for Influenza Containment over Delayed Multiscale Epidemic Model considering Time-Dependent Transmission Rate.
    Abbasi Z; Zamani I; Amiri Mehra AH; Ibeas A; Shafieirad M
    Comput Math Methods Med; 2021; 2021():4348910. PubMed ID: 34707682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak.
    Mondal J; Khajanchi S
    Nonlinear Dyn; 2022; 109(1):177-202. PubMed ID: 35125654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of the infection period distribution on the epidemic spread in a metapopulation model.
    Vergu E; Busson H; Ezanno P
    PLoS One; 2010 Feb; 5(2):e9371. PubMed ID: 20195473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An optimal control theory approach to non-pharmaceutical interventions.
    Lin F; Muthuraman K; Lawley M
    BMC Infect Dis; 2010 Feb; 10():32. PubMed ID: 20170501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strategic decision making about travel during disease outbreaks: a game theoretical approach.
    Zhao S; Bauch CT; He D
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30209046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure.
    Ball F; Sirl D
    J Math Biol; 2018 Jan; 76(1-2):483-530. PubMed ID: 28634747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A note on the use of optimal control on a discrete time model of influenza dynamics.
    González-Parra PA; Lee S; Velázquez L; Castillo-Chavez C
    Math Biosci Eng; 2011 Jan; 8(1):183-97. PubMed ID: 21361407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Epidemiological Model Considering Isolation to Predict COVID-19 Trends in Tokyo, Japan: Numerical Analysis.
    Utamura M; Koizumi M; Kirikami S
    JMIR Public Health Surveill; 2020 Dec; 6(4):e23624. PubMed ID: 33259325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal vaccine allocation during the mumps outbreak in two SIR centres.
    Chernov AA; Kelbert MY; Shemendyuk AA
    Math Med Biol; 2020 Sep; 37(3):303-312. PubMed ID: 31271214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical value in a SIR network model with heterogeneous infectiousness and susceptibility.
    Yan SX; Yuan SL
    Math Biosci Eng; 2020 Sep; 17(5):5802-5811. PubMed ID: 33120577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal control for a SIR epidemic model with limited quarantine.
    Balderrama R; Peressutti J; Pinasco JP; Vazquez F; Vega CS
    Sci Rep; 2022 Jul; 12(1):12583. PubMed ID: 35869150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How best can finite-time social distancing reduce epidemic final size?
    Bliman PA; Duprez M
    J Theor Biol; 2021 Feb; 511():110557. PubMed ID: 33301769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal bang-bang control for variable-order dengue virus; numerical studies.
    Sweilam NH; Al-Mekhlafi SM; Shatta SA
    J Adv Res; 2021 Sep; 32():37-44. PubMed ID: 34484824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitigation of epidemics in contact networks through optimal contact adaptation.
    Youssef M; Scoglio C
    Math Biosci Eng; 2013 Aug; 10(4):1227-51. PubMed ID: 23906209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epidemics with general generation interval distributions.
    Miller JC; Davoudi B; Meza R; Slim AC; Pourbohloul B
    J Theor Biol; 2010 Jan; 262(1):107-15. PubMed ID: 19679141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.