These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34550696)

  • 21. Modifying hydrophilic properties of polyurethane acryl paint substrates by atomic layer deposition and self-assembled monolayers.
    Beitner D; Polishchuk I; Asulin E; Pokroy B
    RSC Adv; 2020 Sep; 10(57):34333-34343. PubMed ID: 35514427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacial Molecular Compatibility for Programming Organic-Metal Oxide Superlattices.
    Ono T; Mitamura S; Hosomi T; Saito H; Ikeuchi M; Liu J; Nagashima K; Takahashi T; Tanaka W; Kanai M; Yanagida T
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27099-27109. PubMed ID: 37226988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ALD resist formed by vapor-deposited self-assembled monolayers.
    Hong J; Porter DW; Sreenivasan R; McIntyre PC; Bent SF
    Langmuir; 2007 Jan; 23(3):1160-5. PubMed ID: 17241027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Area-Selective Deposition of AlO
    Pasquali M; Brady-Boyd A; Leśniewska A; Carolan P; Conard T; O'Connor R; De Gendt S; Armini S
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6079-6091. PubMed ID: 36649199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding inherent substrate selectivity during atomic layer deposition: Effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD.
    Lemaire PC; King M; Parsons GN
    J Chem Phys; 2017 Feb; 146(5):052811. PubMed ID: 28178812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time observation of atomic layer deposition inhibition: metal oxide growth on self-assembled alkanethiols.
    Avila JR; DeMarco EJ; Emery JD; Farha OK; Pellin MJ; Hupp JT; Martinson AB
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11891-8. PubMed ID: 25046585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Correcting Process for High Quality Patterning by Atomic Layer Deposition.
    Minaye Hashemi FS; Prasittichai C; Bent SF
    ACS Nano; 2015 Sep; 9(9):8710-7. PubMed ID: 26181140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray studies of self-assembled organic monolayers grown on hydrogen-terminated Si(111).
    Jin H; Kinser CR; Bertin PA; Kramer DE; Libera JA; Hersam MC; Nguyen ST; Bedzyk MJ
    Langmuir; 2004 Jul; 20(15):6252-8. PubMed ID: 15248710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Area-Selective ALD of Ru on Nanometer-Scale Cu Lines through Dimerization of Amino-Functionalized Alkoxy Silane Passivation Films.
    Zyulkov I; Madhiwala V; Voronina E; Snelgrove M; Bogan J; O'Connor R; De Gendt S; Armini S
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4678-4688. PubMed ID: 31913003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Area-Selective Atomic Layer Deposition of ZnO on Si\SiO
    Moeini B; Avval TG; Brongersma HH; Průša S; Bábík P; Vaníčková E; Strohmeier BR; Bell DS; Eggett D; George SM; Linford MR
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Area-Selective Atomic Layer Deposition of TiN Using Trimethoxy(octadecyl)silane as a Passivation Layer.
    Zheng L; He W; Spampinato V; Franquet A; Sergeant S; Gendt S; Armini S
    Langmuir; 2020 Nov; 36(44):13144-13154. PubMed ID: 33104359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled growth and formation of SAMs investigated by atomic force microscopy.
    Pillai S; Pai RK
    Ultramicroscopy; 2009 Jan; 109(2):161-6. PubMed ID: 19059723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving area-selective molecular layer deposition by selective SAM removal.
    Prasittichai C; Pickrahn KL; Hashemi FS; Bergsman DS; Bent SF
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17831-6. PubMed ID: 25290370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the steric molecular structure of azobenzene on the formation of self-assembled monolayers with a photoswitchable surface morphology.
    Ishikawa D; Ito E; Han M; Hara M
    Langmuir; 2013 Apr; 29(14):4622-31. PubMed ID: 23249363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation and Stability of Phenylphosphonic Acid Monolayers on ZnO: Comparison of In Situ and Ex Situ SAM Preparation.
    Ostapenko A; Klöffel T; Meyer B; Witte G
    Langmuir; 2016 May; 32(20):5029-37. PubMed ID: 27145215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface potential contrasts between silicon surfaces covered and uncovered with an organosilane self-assembled monolayer.
    Hayashi K; Saito N; Sugimura H; Takai O; Nakagiri N
    Ultramicroscopy; 2002 May; 91(1-4):151-6. PubMed ID: 12211463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Domain Boundary Defects in Crystalline Self-Assembled Monolayers.
    Seo E; Lee J; Park N; Min H; Park YD; Lee HS
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6001-6. PubMed ID: 26369187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate changes associated with the chemistry of self-assembled monolayers on silicon.
    McIntire TM; Smalley SR; Newberg JT; Lea AS; Hemminger JC; Finlayson-Pitts BJ
    Langmuir; 2006 Jun; 22(13):5617-24. PubMed ID: 16768485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interface Electrical Properties of Al
    Fisichella G; Schilirò E; Di Franco S; Fiorenza P; Lo Nigro R; Roccaforte F; Ravesi S; Giannazzo F
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7761-7771. PubMed ID: 28135063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.