These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 3455073)
1. Inhibition of red blood cell enzymes by hemin: a mechanism for hemolysis in hemoglobinopathies. Zerez CR; Hseih JW; Tanaka KR Trans Assoc Am Physicians; 1987; 100():329-38. PubMed ID: 3455073 [No Abstract] [Full Text] [Related]
2. CDP-choline does not inhibit erythrocyte glycolytic or pentose phosphate pathway enzyme activity. Lachant NA; Tanaka KR Enzyme; 1984; 32(4):228-31. PubMed ID: 6525998 [TBL] [Abstract][Full Text] [Related]
3. O(2)-dependent stimulation of the pentose phosphate pathway by S-nitrosocysteine in human erythrocytes. Misiti F; Meucci E; Zuppi C; Vincenzoni F; Giardina B; Castagnola M; Messana I Biochem Biophys Res Commun; 2002 Jun; 294(4):829-34. PubMed ID: 12061782 [TBL] [Abstract][Full Text] [Related]
4. [Clinical significance and interpretation of red cell enzyme analyses]. Kanno H; Fujii H Rinsho Byori; 2001 Nov; Suppl 116():139-47. PubMed ID: 11797375 [TBL] [Abstract][Full Text] [Related]
5. Effects of the phenacetin metabolite 4-nitrosophenetol on glycolysis and pentose phosphate pathway in human red cells. Gallemann D; Eyer P Biol Chem Hoppe Seyler; 1993 Jan; 374(1):37-49. PubMed ID: 8439396 [TBL] [Abstract][Full Text] [Related]
6. [Clinical features and metabolic aspects of red blood cells in Hb Hirosaki disease (author's transl)]. Yokoyama M; Izumi Y; Ohba Y; Miyaji T Rinsho Ketsueki; 1980 Jul; 21(7):953-60. PubMed ID: 6448307 [No Abstract] [Full Text] [Related]
7. [Effect of control of heme synthesis by a feed-back type of inhibition on human erythrocytic delta-aminolevulinic acid dehydratase]. Calissano P; Cartasegna C; Bonsignore D Boll Soc Ital Biol Sper; 1966 May; 42(9):508-12. PubMed ID: 5942262 [No Abstract] [Full Text] [Related]
8. Red cell enzymes in myelodysplastic syndromes: a review. Lintula R Scand J Haematol Suppl; 1986; 45():56-9. PubMed ID: 3515520 [No Abstract] [Full Text] [Related]
9. [Erythrocyte metabolism in type I diabetes mellitus (key enzymes of glycolysis)]. Sitzmann FC Padiatr Padol; 1984; 19(3):303-9. PubMed ID: 6236416 [TBL] [Abstract][Full Text] [Related]
10. [Hemoglobinopathies and erythrocyte enzyme deficiencies in Switzerland: laboratory diagnoses of the last 10 years]. Marti HR; Fischer S; Killer D Schweiz Med Wochenschr; 1987 Jun; 117(26):981-3. PubMed ID: 3616590 [TBL] [Abstract][Full Text] [Related]
11. Red blood cell metabolism in experimental animals: pentose phosphate pathway, antioxidant enzymes and glutathione. Suzuki T; Agar NS; Suzuki M Jikken Dobutsu; 1985 Oct; 34(4):353-66. PubMed ID: 3910443 [No Abstract] [Full Text] [Related]
16. [Ferrokinetic studies in hemoglobin-Vienna hemoglobinopathy]. Pietschmann VH; Willvonseder R; Havlik E; Höfer R Acta Med Austriaca; 1974; 2(1):72-5. PubMed ID: 4464762 [No Abstract] [Full Text] [Related]
17. [Hemolysis of human erythrocytes by hemin. The role of hemin in erythrocyte autohemolysis]. Iamaĭkina IV; Chernitskiĭ EA Biofizika; 1994; 39(4):691-4. PubMed ID: 7981277 [TBL] [Abstract][Full Text] [Related]
18. Regulation of human erythrocyte metabolism by insulin: cellular distribution of 6-phosphofructo-1-kinase and its implication for red blood cell function. Zancan P; Sola-Penna M Mol Genet Metab; 2005 Nov; 86(3):401-11. PubMed ID: 16102994 [TBL] [Abstract][Full Text] [Related]
19. Red cell enzymopathies in the newborn. I. Evaluation of red cell metabolism. Travis SF; Delivoria-Papadopoulos M Ann Clin Lab Sci; 1982; 12(2):89-98. PubMed ID: 6280578 [TBL] [Abstract][Full Text] [Related]
20. Dapsone-induced methemoglobinemia and hemolysis in the presence of familial hemoglobinopathy Hasharon and familial methemoglobin reductase deficiency. Ganer A; Knobel B; Fryd CH; Rachmilewitz EA Isr J Med Sci; 1981 Aug; 17(8):703-4. PubMed ID: 6765904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]