These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34550782)

  • 1. One-Year
    Mitsunobu S; Ohashi Y; Makita H; Suzuki Y; Nozaki T; Ohigashi T; Ina T; Takaki Y
    Appl Environ Microbiol; 2021 Nov; 87(23):e0097721. PubMed ID: 34550782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ(57/54)Fe Observations.
    Toner BM; Rouxel OJ; Santelli CM; Bach W; Edwards KJ
    Front Microbiol; 2016; 7():648. PubMed ID: 27242685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic pyrite formation produces a large Fe isotope fractionation.
    Guilbaud R; Butler IB; Ellam RM
    Science; 2011 Jun; 332(6037):1548-51. PubMed ID: 21700871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions.
    Liu L; Guo D; Qiu G; Liu C; Ning Z
    J Environ Manage; 2022 Sep; 317():115425. PubMed ID: 35751250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments.
    Kantar C; Ari C; Keskin S; Dogaroglu ZG; Karadeniz A; Alten A
    J Contam Hydrol; 2015 Mar; 174():28-38. PubMed ID: 25644191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced generation of reactive oxygen species by pyrite for As(III) oxidation and immobilization: The vital role of Fe(II).
    Wu X; Yang J; Liu S; He Z; Wang Y; Qin W; Si Y
    Chemosphere; 2022 Dec; 309(Pt 2):136793. PubMed ID: 36220433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Microaerophilic Iron(II)-Oxidizers to Iron(III) Mineral Formation.
    Maisch M; Lueder U; Laufer K; Scholze C; Kappler A; Schmidt C
    Environ Sci Technol; 2019 Jul; 53(14):8197-8204. PubMed ID: 31203607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.
    Mitsunobu S; Zhu M; Takeichi Y; Ohigashi T; Suga H; Jinno M; Makita H; Sakata M; Ono K; Mase K; Takahashi Y
    Microbes Environ; 2016; 31(1):63-9. PubMed ID: 26947441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.
    Finck N; Dardenne K
    J Contam Hydrol; 2016 May; 188():44-51. PubMed ID: 27010738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.
    Li W; Joshi SR; Hou G; Burdige DJ; Sparks DL; Jaisi DP
    Environ Sci Technol; 2015 Jan; 49(1):203-11. PubMed ID: 25469633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer.
    Jakus N; Blackwell N; Osenbrück K; Straub D; Byrne JM; Wang Z; Glöckler D; Elsner M; Lueders T; Grathwohl P; Kleindienst S; Kappler A
    Appl Environ Microbiol; 2021 Jul; 87(16):e0046021. PubMed ID: 34085863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification.
    Yan R; Kappler A; Peiffer S
    Environ Sci Technol; 2015 Oct; 49(19):11403-10. PubMed ID: 26335043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressive effects of ferric-catecholate complexes on pyrite oxidation.
    Li X; Hiroyoshi N; Tabelin CB; Naruwa K; Harada C; Ito M
    Chemosphere; 2019 Jan; 214():70-78. PubMed ID: 30257197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic Neutrophilic Pyrite Oxidation by a Chemolithoautotrophic Nitrate-Reducing Iron(II)-Oxidizing Culture Enriched from a Fractured Aquifer.
    Jakus N; Mellage A; Höschen C; Maisch M; Byrne JM; Mueller CW; Grathwohl P; Kappler A
    Environ Sci Technol; 2021 Jul; 55(14):9876-9884. PubMed ID: 34247483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial colonization of metal sulfide minerals at a diffuse-flow deep-sea hydrothermal vent at 9°50'N on the East Pacific Rise.
    Wang CH; Gulmann LK; Zhang T; Farfan GA; Hansel CM; Sievert SM
    Geobiology; 2020 Sep; 18(5):594-605. PubMed ID: 32336020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.