BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34550840)

  • 1. Recent advances in lipopolysaccharide-based glycoconjugate vaccines.
    Zhu H; Rollier CS; Pollard AJ
    Expert Rev Vaccines; 2021 Dec; 20(12):1515-1538. PubMed ID: 34550840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of O-polysaccharide chain length regulators in Gram-negative bacteria using the Wzx-/Wzy-dependent pathway enhances production of defined modal length O-polysaccharide polymers for use as haptens in glycoconjugate vaccines.
    Hegerle N; Bose J; Ramachandran G; Galen JE; Levine MM; Simon R; Tennant SM
    J Appl Microbiol; 2018 Aug; 125(2):575-585. PubMed ID: 29603538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production.
    Dow JM; Mauri M; Scott TA; Wren BW
    Expert Rev Vaccines; 2020 Jun; 19(6):507-527. PubMed ID: 32627609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Homogeneous Antimicrobial Glycoconjugate Vaccines.
    Adamo R
    Acc Chem Res; 2017 May; 50(5):1270-1279. PubMed ID: 28463499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact and Control of Sugar Size in Glycoconjugate Vaccines.
    Stefanetti G; MacLennan CA; Micoli F
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain Selection for Generation of O-Antigen-Based Glycoconjugate Vaccines against Invasive Nontyphoidal Salmonella Disease.
    Lanzilao L; Stefanetti G; Saul A; MacLennan CA; Micoli F; Rondini S
    PLoS One; 2015; 10(10):e0139847. PubMed ID: 26445460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Carriers for Glycoconjugate Vaccines: History, Selection Criteria, Characterization and New Trends.
    Micoli F; Adamo R; Costantino P
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29914046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycoconjugate vaccines: current approaches towards faster vaccine design.
    Micoli F; Del Bino L; Alfini R; Carboni F; Romano MR; Adamo R
    Expert Rev Vaccines; 2019 Sep; 18(9):881-895. PubMed ID: 31475596
    [No Abstract]   [Full Text] [Related]  

  • 9. Glycoengineered Outer Membrane Vesicles as a Platform for Vaccine Development.
    Valguarnera E; Feldman MF
    Methods Enzymol; 2017; 597():285-310. PubMed ID: 28935107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O-Antigen Extraction, Purification, and Chemical Conjugation to a Carrier Protein.
    Micoli F; Giannelli C; Di Benedetto R
    Methods Mol Biol; 2021; 2183():267-304. PubMed ID: 32959249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic carbohydrate-based vaccines: challenges and opportunities.
    Mettu R; Chen CY; Wu CY
    J Biomed Sci; 2020 Jan; 27(1):9. PubMed ID: 31900143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential targets for next generation antimicrobial glycoconjugate vaccines.
    Micoli F; Costantino P; Adamo R
    FEMS Microbiol Rev; 2018 May; 42(3):388-423. PubMed ID: 29547971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on Sugar-Protein Connectivity in Salmonella O-Antigen Glycoconjugate Vaccines.
    De Benedetto G; Salvini L; Gotta S; Cescutti P; Micoli F
    Bioconjug Chem; 2018 May; 29(5):1736-1747. PubMed ID: 29697244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the production of recombinant glycoconjugate vaccines.
    Kay E; Cuccui J; Wren BW
    NPJ Vaccines; 2019; 4():16. PubMed ID: 31069118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of functional oligosaccharide mimics of the Shigella flexneri serotype 2a O-antigen: implications for the development of a chemically defined glycoconjugate vaccine.
    Phalipon A; Costachel C; Grandjean C; Thuizat A; Guerreiro C; Tanguy M; Nato F; Vulliez-Le Normand B; Bélot F; Wright K; Marcel-Peyre V; Sansonetti PJ; Mulard LA
    J Immunol; 2006 Feb; 176(3):1686-94. PubMed ID: 16424198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving efficacy of glycoconjugate vaccines: from chemical conjugates to next generation constructs.
    Berti F; Micoli F
    Curr Opin Immunol; 2020 Aug; 65():42-49. PubMed ID: 32361591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Click chemistry compared to thiol chemistry for the synthesis of site-selective glycoconjugate vaccines using CRM
    Stefanetti G; Allan M; Usera A; Micoli F
    Glycoconj J; 2020 Oct; 37(5):611-622. PubMed ID: 32535667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classical and novel strategies to develop a
    Barel LA; Mulard LA
    Hum Vaccin Immunother; 2019; 15(6):1338-1356. PubMed ID: 31158047
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycoconjugate vaccines against antimicrobial resistant pathogens.
    Sorieul C; Dolce M; Romano MR; Codée J; Adamo R
    Expert Rev Vaccines; 2023; 22(1):1055-1078. PubMed ID: 37902243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of conjugation chemistry on the immunogenicity of S. Typhimurium conjugate vaccines.
    Stefanetti G; Rondini S; Lanzilao L; Saul A; MacLennan CA; Micoli F
    Vaccine; 2014 Oct; 32(46):6122-9. PubMed ID: 25192974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.