These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34550889)

  • 1. Augmented Hip Proprioception Influences Mediolateral Foot Placement During Walking.
    Knapp HA; Sobolewski BA; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2017-2026. PubMed ID: 34550889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hip proprioceptive feedback influences the control of mediolateral stability during human walking.
    Roden-Reynolds DC; Walker MH; Wasserman CR; Dean JC
    J Neurophysiol; 2015 Oct; 114(4):2220-9. PubMed ID: 26289467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered foot placement modulation with somatosensory stimulation in people with chronic stroke.
    Schonhaut EB; Howard KE; Jacobs CJ; Knight HL; Chesnutt AN; Dean JC
    J Biomech; 2024 Mar; 166():112043. PubMed ID: 38484654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a Novel Force-Field to Manipulate the Relationship Between Pelvis Motion and Step Width in Human Walking.
    Heitkamp LN; Stimpson KH; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2051-2058. PubMed ID: 31545734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between mediolateral step modulation and clinical balance measures in people with chronic stroke.
    Howard KE; Reimold NK; Knight HL; Embry AE; Knapp HA; Agne AA; Jacobs CJ; Dean JC
    Gait Posture; 2024 Mar; 109():9-14. PubMed ID: 38237508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations of pelvis state to foot placement do not imply within-step active control.
    Patil NS; Dingwell JB; Cusumano JP
    J Biomech; 2019 Dec; 97():109375. PubMed ID: 31668906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking.
    Layne CS; Chelette AM; Pourmoghaddam A
    Somatosens Mot Res; 2015; 32(1):31-8. PubMed ID: 25162146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Targeted Assistance and Perturbations on the Relationship Between Pelvis Motion and Step Width in People With Chronic Stroke.
    Reimold NK; Knapp HA; Chesnutt AN; Agne A; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():134-143. PubMed ID: 33196440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.
    Zissimopoulos A; Fatone S; Gard S
    Prosthet Orthot Int; 2015 Oct; 39(5):372-9. PubMed ID: 24878846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-stroke deficits in mediolateral foot placement accuracy depend on the prescribed walking task.
    Stimpson KH; Embry AE; Dean JC
    J Biomech; 2021 Nov; 128():110738. PubMed ID: 34509909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proprioceptive feedback contributes to the adaptation toward an economical gait pattern.
    Hubbuch JE; Bennett BW; Dean JC
    J Biomech; 2015 Aug; 48(11):2925-31. PubMed ID: 25935689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered active control of step width in response to mediolateral leg perturbations while walking.
    Reimold NK; Knapp HA; Henderson RE; Wilson L; Chesnutt AN; Dean JC
    Sci Rep; 2020 Jul; 10(1):12197. PubMed ID: 32699328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direction-dependent control of balance during walking and standing.
    O'Connor SM; Kuo AD
    J Neurophysiol; 2009 Sep; 102(3):1411-9. PubMed ID: 19553493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired foot vibration sensitivity is related to altered plantar pressures during walking in people with multiple sclerosis.
    Jones SL; van Emmerik REA
    Mult Scler Relat Disord; 2023 Jul; 75():104767. PubMed ID: 37216882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking.
    Wang Y; Srinivasan M
    Biol Lett; 2014 Sep; 10(9):. PubMed ID: 25252834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmenting locomotor perception by remapping tactile foot sensation to the back.
    Jouybari AF; Ferraroli N; Bouri M; Alaoui SH; Kannape OA; Blanke O
    J Neuroeng Rehabil; 2024 Apr; 21(1):65. PubMed ID: 38678291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.