These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 34551191)
21. Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Qiu X; Liu S; Zhang H; Zhu B; Su Y; Zheng C; Tian R; Wang M; Kuang H; Zhao X; Jin Y Stem Cell Res Ther; 2018 Apr; 9(1):88. PubMed ID: 29615126 [TBL] [Abstract][Full Text] [Related]
22. Nandrolone supplementation does not improve functional recovery in an aged animal model of volumetric muscle loss injury. Kim JT; Roberts K; Dunlap G; Perry R; Washington T; Wolchok JC J Tissue Eng Regen Med; 2022 Apr; 16(4):367-379. PubMed ID: 35113494 [TBL] [Abstract][Full Text] [Related]
23. Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids. Murphy KC; Whitehead J; Falahee PC; Zhou D; Simon SI; Leach JK Stem Cells; 2017 Jun; 35(6):1493-1504. PubMed ID: 28276602 [TBL] [Abstract][Full Text] [Related]
24. Combined regenerative rehabilitation improves recovery following volumetric muscle loss injury in a rat model. Johnson D; Tobo C; Au J; Nagarapu A; Ziemkiewicz N; Chauvin H; Robinson J; Shringarpure S; Tadiwala J; Brockhouse J; Flaveny CA; Garg K J Biomed Mater Res B Appl Biomater; 2024 Jul; 112(7):e35438. PubMed ID: 38923755 [TBL] [Abstract][Full Text] [Related]
25. Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential. Chen LC; Wang HW; Huang CC Cells; 2021 Oct; 10(10):. PubMed ID: 34685727 [TBL] [Abstract][Full Text] [Related]
26. Pharmaceutical Agents for Contractile-Metabolic Dysfunction After Volumetric Muscle Loss. McFaline-Figueroa J; Schifino AG; Nichenko AS; Lord MN; Hunda ET; Winders EA; Noble EE; Greising SM; Call JA Tissue Eng Part A; 2022 Sep; 28(17-18):795-806. PubMed ID: 35620911 [TBL] [Abstract][Full Text] [Related]
27. Recovery from volumetric muscle loss injury: A comparison between young and aged rats. Kim JT; Kasukonis BM; Brown LA; Washington TA; Wolchok JC Exp Gerontol; 2016 Oct; 83():37-46. PubMed ID: 27435497 [TBL] [Abstract][Full Text] [Related]
28. Codelivery of Infusion Decellularized Skeletal Muscle with Minced Muscle Autografts Improved Recovery from Volumetric Muscle Loss Injury in a Rat Model. Kasukonis B; Kim J; Brown L; Jones J; Ahmadi S; Washington T; Wolchok J Tissue Eng Part A; 2016 Oct; 22(19-20):1151-1163. PubMed ID: 27570911 [TBL] [Abstract][Full Text] [Related]
29. Enhancement of anti-inflammatory and immunomodulatory effects of adipose-derived human mesenchymal stem cells by making uniform spheroid on the new nano-patterned plates. Lee S; Kim HS; Min BH; Kim BG; Kim SA; Nam H; Lee M; Kim M; Hwang HY; Leesong AI; Leesong MM; Kim JH; Shin JS Biochem Biophys Res Commun; 2021 May; 552():164-169. PubMed ID: 33751933 [TBL] [Abstract][Full Text] [Related]
30. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Niu H; Li X; Li H; Fan Z; Ma J; Guan J Acta Biomater; 2019 Jan; 83():96-108. PubMed ID: 30541703 [TBL] [Abstract][Full Text] [Related]
32. Self-assembled GFFYK peptide hydrogel enhances the therapeutic efficacy of mesenchymal stem cells in a mouse hindlimb ischemia model. Huang A; Liu D; Qi X; Yue Z; Cao H; Zhang K; Lei X; Wang Y; Kong D; Gao J; Li Z; Liu N; Wang Y Acta Biomater; 2019 Feb; 85():94-105. PubMed ID: 30550934 [TBL] [Abstract][Full Text] [Related]
33. Exogenous Signaling Molecules Released from Aptamer-Functionalized Hydrogels Promote the Survival of Mesenchymal Stem Cell Spheroids. Zhao N; Coyne J; Abune L; Shi P; Lian XL; Zhang G; Wang Y ACS Appl Mater Interfaces; 2020 Jun; 12(22):24599-24610. PubMed ID: 32384232 [TBL] [Abstract][Full Text] [Related]
34. Hypoxic Preconditioning of Mesenchymal Stem Cells with Subsequent Spheroid Formation Accelerates Repair of Segmental Bone Defects. Ho SS; Hung BP; Heyrani N; Lee MA; Leach JK Stem Cells; 2018 Sep; 36(9):1393-1403. PubMed ID: 29968952 [TBL] [Abstract][Full Text] [Related]
35. In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Carthew J; Donderwinkel I; Shrestha S; Truong VX; Forsythe JS; Frith JE Acta Biomater; 2020 Jan; 101():249-261. PubMed ID: 31722255 [TBL] [Abstract][Full Text] [Related]
36. Evaluating the potential use of functional fibrosis to facilitate improved outcomes following volumetric muscle loss injury. Dolan CP; Motherwell JM; Franco SR; Janakiram NB; Valerio MS; Goldman SM; Dearth CL Acta Biomater; 2022 Mar; 140():379-388. PubMed ID: 34843950 [TBL] [Abstract][Full Text] [Related]
37. Decellularized extracellular matrix gelloids support mesenchymal stem cell growth and function in vitro. Talovic M; Patel K; Schwartz M; Madsen J; Garg K J Tissue Eng Regen Med; 2019 Oct; 13(10):1830-1842. PubMed ID: 31306568 [TBL] [Abstract][Full Text] [Related]
38. Bioactive Nanofiber-Hydrogel Composite Regulates Regenerative Microenvironment for Skeletal Muscle Regeneration after Volumetric Muscle Loss. Yu W; Zhang X; Gu M; Wang J; Zhang Y; Zhang W; Yuan WE Adv Healthc Mater; 2024 Jul; 13(17):e2304087. PubMed ID: 38531346 [TBL] [Abstract][Full Text] [Related]
39. Methacrylic acid-based hydrogels enhance skeletal muscle regeneration after volumetric muscle loss in mice. Carleton MM; Locke M; Sefton MV Biomaterials; 2021 Aug; 275():120909. PubMed ID: 34087582 [TBL] [Abstract][Full Text] [Related]
40. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis. Greising SM; Corona BT; McGann C; Frankum JK; Warren GL Tissue Eng Part B Rev; 2019 Dec; 25(6):510-525. PubMed ID: 31578930 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]