These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34551254)

  • 1. Plasmon Character Index: An Accurate and Efficient Metric for Identifying and Quantifying Plasmons in Molecules.
    Langford J; Xu X; Yang Y
    J Phys Chem Lett; 2021 Sep; 12(38):9391-9397. PubMed ID: 34551254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmons: untangling the classical, experimental, and quantum mechanical definitions.
    Gieseking RLM
    Mater Horiz; 2022 Jan; 9(1):25-42. PubMed ID: 34608479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate.
    Guerrini M; Calzolari A; Varsano D; Corni S
    J Chem Theory Comput; 2019 May; 15(5):3197-3203. PubMed ID: 30986064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Mechanical Identification of Quadrupolar Plasmonic Excited States in Silver Nanorods.
    Gieseking RL; Ratner MA; Schatz GC
    J Phys Chem A; 2016 Nov; 120(46):9324-9329. PubMed ID: 27787991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmons in molecules: microscopic characterization based on orbital transitions and momentum conservation.
    Krauter CM; Schirmer J; Jacob CR; Pernpointner M; Dreuw A
    J Chem Phys; 2014 Sep; 141(10):104101. PubMed ID: 25217898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Coherent Dynamics of Localized Surface Plasmons in Gold and Silver Nanospheres; Large Size Effects.
    Kolwas K
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.
    Schmidt MK; Esteban R; González-Tudela A; Giedke G; Aizpurua J
    ACS Nano; 2016 Jun; 10(6):6291-8. PubMed ID: 27203727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum finite-size effects in graphene plasmons.
    Thongrattanasiri S; Manjavacas A; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1766-75. PubMed ID: 22217250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.
    Schimpf AM; Thakkar N; Gunthardt CE; Masiello DJ; Gamelin DR
    ACS Nano; 2014 Jan; 8(1):1065-72. PubMed ID: 24359559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lifetime dynamics of plasmons in the few-atom limit.
    Chapkin KD; Bursi L; Stec GJ; Lauchner A; Hogan NJ; Cui Y; Nordlander P; Halas NJ
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):9134-9139. PubMed ID: 30150399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect to Direct Charge Transfer Transition in Plasmon-Enabled CO
    Zhang Y; Yan L; Guan M; Chen D; Xu Z; Guo H; Hu S; Zhang S; Liu X; Guo Z; Li S; Meng S
    Adv Sci (Weinh); 2022 Jan; 9(2):e2102978. PubMed ID: 34766740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry.
    Zheng BY; Zhao H; Manjavacas A; McClain M; Nordlander P; Halas NJ
    Nat Commun; 2015 Jul; 6():7797. PubMed ID: 26165521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving single plasmons generated by multiquantum-emitters on a silver nanowire.
    Li Q; Wei H; Xu H
    Nano Lett; 2014 Jun; 14(6):3358-63. PubMed ID: 24844583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic properties of metallic nanoparticles: the effects of size quantization.
    Townsend E; Bryant GW
    Nano Lett; 2012 Jan; 12(1):429-34. PubMed ID: 22181554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices.
    Tagliabue G; Jermyn AS; Sundararaman R; Welch AJ; DuChene JS; Pala R; Davoyan AR; Narang P; Atwater HA
    Nat Commun; 2018 Aug; 9(1):3394. PubMed ID: 30140064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.