These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34551254)

  • 21. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emergence of excited-state plasmon modes in linear hydrogen chains from time-dependent quantum mechanical methods.
    DePrince AE; Pelton M; Guest JR; Gray SK
    Phys Rev Lett; 2011 Nov; 107(19):196806. PubMed ID: 22181635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anharmonicity of Plasmons in Metallic Nanostructures Useful for Metallization of Solar Cells.
    Krzemińska Z; Jacak WA
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of charge transfer plasmons in silver nanocluster dimers using semiempirical methods.
    Sun Q; Ceylan YS; Gieseking RLM
    Phys Chem Chem Phys; 2024 Jul; 26(28):19138-19160. PubMed ID: 38962964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hybrid quantum-classical theory for predicting terahertz charge-transfer plasmons in metal nanoparticles on graphene.
    Fedorov AS; Eremkin EV; Krasnov PO; Gerasimov VS; Ågren H; Polyutov SP
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38294310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of plasmon-like excited states in silver nanowires and nanorods.
    Dillon AD; Gieseking RLM
    J Chem Phys; 2022 Feb; 156(7):074301. PubMed ID: 35183076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory.
    Fedorov AS; Krasnov PO; Visotin MA; Tomilin FN; Polyutov SP; Ågren H
    J Chem Phys; 2019 Dec; 151(24):244125. PubMed ID: 31893913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional Charge Transfer Plasmon Metadevices.
    Gerislioglu B; Ahmadivand A
    Research (Wash D C); 2020; 2020():9468692. PubMed ID: 32055799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing.
    Zhang Y; May V
    J Chem Phys; 2015 Jun; 142(22):224702. PubMed ID: 26071722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations.
    Weissker HC; López-Lozano X
    Phys Chem Chem Phys; 2015 Nov; 17(42):28379-86. PubMed ID: 26104995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localized surface plasmons in vibrating graphene nanodisks.
    Wang W; Li BH; Stassen E; Mortensen NA; Christensen J
    Nanoscale; 2016 Feb; 8(6):3809-15. PubMed ID: 26815600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solar-driven plasmonic heterostructure Ti/TiO
    Cheng C; Akram MN; Nilsen O; Pryds N; Wang K
    Phys Chem Chem Phys; 2020 Apr; 22(15):7769-7777. PubMed ID: 32236207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.
    Ding W; Hsu LY; Schatz GC
    J Chem Phys; 2017 Feb; 146(6):064109. PubMed ID: 28201896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.
    Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P
    Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges.
    Fedorov AS; Visotin MA; Eremkin EV; Krasnov PO; Ågren H; Polyutov SP
    Phys Chem Chem Phys; 2022 Aug; 24(32):19531-19540. PubMed ID: 35938445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling and measuring plasmonic excitations in hollow spherical gold nanoparticles.
    Müller MM; Perdana N; Rockstuhl C; Holzer C
    J Chem Phys; 2022 Mar; 156(9):094103. PubMed ID: 35259902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic plasmon formation and propagation in artificial aromatic molecules.
    Liu N; Mukherjee S; Bao K; Brown LV; Dorfmüller J; Nordlander P; Halas NJ
    Nano Lett; 2012 Jan; 12(1):364-9. PubMed ID: 22122612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoabsorption by volume plasmons in metal nanoclusters.
    Xia C; Yin C; Kresin VV
    Phys Rev Lett; 2009 Apr; 102(15):156802. PubMed ID: 19518666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical Detection of Single Graphene Plasmons.
    Yu R; García de Abajo FJ
    ACS Nano; 2016 Aug; 10(8):8045-53. PubMed ID: 27472914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.