These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 34551533)
1. The curious case of DMSO: A CCSD(T)/CBS(aQ56+d) benchmark and DFT study. Olive LN; Dornshuld EV; Webster CE J Chem Phys; 2021 Sep; 155(11):114304. PubMed ID: 34551533 [TBL] [Abstract][Full Text] [Related]
2. Benchmark theoretical study of the π-π binding energy in the benzene dimer. Miliordos E; Aprà E; Xantheas SS J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749 [TBL] [Abstract][Full Text] [Related]
3. Post-complete-basis-set extrapolation of conventional and explicitly correlated coupled-cluster energies: can the convergence to the CBS limit be diagnosed? Varandas AJC Phys Chem Chem Phys; 2021 Apr; 23(14):8717-8730. PubMed ID: 33876031 [TBL] [Abstract][Full Text] [Related]
4. Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. Marshall MS; Burns LA; Sherrill CD J Chem Phys; 2011 Nov; 135(19):194102. PubMed ID: 22112061 [TBL] [Abstract][Full Text] [Related]
5. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. Hill JG; Peterson KA; Knizia G; Werner HJ J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044 [TBL] [Abstract][Full Text] [Related]
6. Basis set dependence of higher-order correlation effects in π-type interactions. Carrell EJ; Thorne CM; Tschumper GS J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765 [TBL] [Abstract][Full Text] [Related]
7. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy. Chen JL; Sun T; Wang YB; Wang W J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021 [TBL] [Abstract][Full Text] [Related]
8. Improving "Silver-Standard" Benchmark Interaction Energies with Bond Functions. Dutta NN; Patkowski K J Chem Theory Comput; 2018 Jun; 14(6):3053-3070. PubMed ID: 29772176 [TBL] [Abstract][Full Text] [Related]
9. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet? Patkowski K J Chem Phys; 2012 Jul; 137(3):034103. PubMed ID: 22830679 [TBL] [Abstract][Full Text] [Related]
10. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the potential energy surfaces of two small but challenging noncovalent dimers: (P2 )2 and (PCCP)2. Van Dornshuld E; Tschumper GS J Comput Chem; 2014 Mar; 35(6):479-87. PubMed ID: 24403058 [TBL] [Abstract][Full Text] [Related]
12. Effects of Heterogeneity in Small π-Type Dimers: Homogeneous and Mixed Dimers of Diacetylene and Cyanogen. Copeland KL; Tschumper GS J Chem Theory Comput; 2012 Nov; 8(11):4279-84. PubMed ID: 26605591 [TBL] [Abstract][Full Text] [Related]
13. Structure and binding energy of the H Lemke KH J Chem Phys; 2017 Jun; 146(23):234301. PubMed ID: 28641437 [TBL] [Abstract][Full Text] [Related]
14. Generalized Energy-Based Fragmentation CCSD(T)-F12a Method and Application to the Relative Energies of Water Clusters (H2O)20. Wang K; Li W; Li S J Chem Theory Comput; 2014 Apr; 10(4):1546-53. PubMed ID: 26580368 [TBL] [Abstract][Full Text] [Related]
15. Guest-Host Interactions in Clathrate Hydrates: Benchmark MP2 and CCSD(T)/CBS Binding Energies of CH Heindel JP; Herman KM; Aprà E; Xantheas SS J Phys Chem Lett; 2021 Aug; 12(31):7574-7582. PubMed ID: 34347487 [TBL] [Abstract][Full Text] [Related]
16. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration. Sedlak R; Riley KE; Řezáč J; Pitoňák M; Hobza P Chemphyschem; 2013 Mar; 14(4):698-707. PubMed ID: 23315749 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment. Zhang J; Valeev EF J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729 [TBL] [Abstract][Full Text] [Related]
18. New accurate benchmark energies for large water clusters: DFT is better than expected. Anacker T; Friedrich J J Comput Chem; 2014 Mar; 35(8):634-43. PubMed ID: 24482156 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions. Sirianni DA; Burns LA; Sherrill CD J Chem Theory Comput; 2017 Jan; 13(1):86-99. PubMed ID: 28068770 [TBL] [Abstract][Full Text] [Related]
20. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled? Sylvetsky N; Peterson KA; Karton A; Martin JM J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]