These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34551538)

  • 1. Diagrammatics of tunable interactions in anisotropic colloids in rotating electric or magnetic fields: New kind of dipole-like interactions.
    Komarov KA; Yurchenko SO
    J Chem Phys; 2021 Sep; 155(11):114107. PubMed ID: 34551538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagrammatic method for tunable interactions in colloidal suspensions in rotating electric or magnetic fields.
    Komarov KA; Yarkov AV; Yurchenko SO
    J Chem Phys; 2019 Dec; 151(24):244103. PubMed ID: 31893897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloids in rotating electric and magnetic fields: designing tunable interactions with spatial field hodographs.
    Komarov KA; Yurchenko SO
    Soft Matter; 2020 Sep; 16(35):8155-8168. PubMed ID: 32797126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell particles in rotating electric and magnetic fields: Designing tunable interactions via particle engineering.
    Komarov KA; Mantsevich VN; Yurchenko SO
    J Chem Phys; 2021 Aug; 155(8):084903. PubMed ID: 34470364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable interactions between particles in conically rotating electric fields.
    Komarov KA; Kryuchkov NP; Yurchenko SO
    Soft Matter; 2018 Dec; 14(47):9657-9674. PubMed ID: 30457624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions.
    Yakovlev EV; Kryuchkov NP; Korsakova SA; Dmitryuk NA; Ovcharov PV; Andronic MM; Rodionov IA; Sapelkin AV; Yurchenko SO
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):564-574. PubMed ID: 34626996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable two-dimensional assembly of colloidal particles in rotating electric fields.
    Yakovlev EV; Komarov KA; Zaytsev KI; Kryuchkov NP; Koshelev KI; Zotov AK; Shelestov DA; Tolstoguzov VL; Kurlov VN; Ivlev AV; Yurchenko SO
    Sci Rep; 2017 Oct; 7(1):13727. PubMed ID: 29062107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields.
    Elsner N; Royall CP; Vincent B; Snoswell DR
    J Chem Phys; 2009 Apr; 130(15):154901. PubMed ID: 19388766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards template-assisted assembly of nematic colloids.
    Silvestre NM; Liu Q; Senyuk B; Smalyukh II; Tasinkevych M
    Phys Rev Lett; 2014 Jun; 112(22):225501. PubMed ID: 24949776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of elastic interaction between colloidal particles in a nematic cell in the presence of an external electric or magnetic field.
    Chernyshuk SB; Tovkach OM; Lev BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011706. PubMed ID: 22400582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic electrostatic screening of charged colloids in nematic solvents.
    Everts JC; Senyuk B; Mundoor H; Ravnik M; Smalyukh II
    Sci Adv; 2021 Jan; 7(5):. PubMed ID: 33571118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced diffusion and magnetophoresis of paramagnetic colloidal particles in rotating magnetic fields.
    Sherman ZM; Pallone JL; Erb RM; Swan JW
    Soft Matter; 2019 Aug; 15(33):6677-6689. PubMed ID: 31397836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly.
    Demirörs AF; Courty D; Libanori R; Studart AR
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4623-8. PubMed ID: 27071113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal Switches by Electric and Magnetic Fields.
    Demirörs AF; Beltramo PJ; Vutukuri HR
    ACS Appl Mater Interfaces; 2017 May; 9(20):17238-17244. PubMed ID: 28474523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-controlled self-assembly and disassembly of colloidal nanoparticles.
    Lattuada M; Furlan M; Harshe Y
    Chimia (Aarau); 2011; 65(10):792-8. PubMed ID: 22054133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional assemblies of nematic colloids in homeotropic cells and their response to electric fields.
    Tamura Y; Kimura Y
    Soft Matter; 2016 Aug; 12(32):6817-26. PubMed ID: 27453568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of two-dimensional magnetic colloids in tilted external magnetic fields.
    Froltsov VA; Blaak R; Likos CN; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061406. PubMed ID: 14754203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-field-induced assembly and propulsion of chiral colloidal clusters.
    Ma F; Wang S; Wu DT; Wu N
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6307-12. PubMed ID: 25941383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Propulsion of Magnetic Dimers under Orthogonally Applied Electric and Magnetic Fields.
    Zhu X; Gao Y; Mhana R; Yang T; Hanson BL; Yang X; Gong J; Wu N
    Langmuir; 2021 Aug; 37(30):9151-9161. PubMed ID: 34292729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.