These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34551555)

  • 1. Breakdown of the Stokes-Einstein relation in supercooled liquids: A cage-jump perspective.
    Pastore R; Kikutsuji T; Rusciano F; Matubayasi N; Kim K; Greco F
    J Chem Phys; 2021 Sep; 155(11):114503. PubMed ID: 34551555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids.
    Sengupta S; Karmakar S
    J Chem Phys; 2014 Jun; 140(22):224505. PubMed ID: 24929405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakdown of the Stokes-Einstein relation in supercooled water: the jump-diffusion perspective.
    Dubey V; Dueby S; Daschakraborty S
    Phys Chem Chem Phys; 2021 Sep; 23(36):19964-19986. PubMed ID: 34515269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing Microscopic and Macroscopic Dynamics in a Paradigmatic Model of Glass-Forming Molecular Liquid.
    Porpora G; Rusciano F; Pastore R; Greco F
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational dynamics of a rod-like probe in supercooled liquids: an experimentally realizable method to study Stokes-Einstein breakdown, dynamic heterogeneity, and amorphous order.
    Mutneja A; Karmakar S
    Soft Matter; 2021 Jun; 17(23):5738-5746. PubMed ID: 34018543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic scaling for anomalous transport in supercooled liquids.
    Furukawa A; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):030501. PubMed ID: 23030855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Origin of the Breakdown of the Stokes-Einstein Relation in Supercooled Water at Different Temperature-Pressure Conditions.
    Dubey V; Erimban S; Indra S; Daschakraborty S
    J Phys Chem B; 2019 Nov; 123(47):10089-10099. PubMed ID: 31702917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakdown of the Stokes-Einstein Relation in Supercooled Water/Methanol Binary Mixtures: Explanation Using the Translational Jump-Diffusion Approach.
    Dubey V; Daschakraborty S
    J Phys Chem B; 2020 Nov; 124(46):10398-10408. PubMed ID: 33153260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural relaxation, self-diffusion, and kinetic heterogeneity in the two-dimensional lattice Coulomb gas.
    Lee SJ; Kim B; Lee JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066103. PubMed ID: 11736232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the validity of the Stokes-Einstein relation in supercooled water using nanomolecular probes.
    Berkowicz S; Perakis F
    Phys Chem Chem Phys; 2021 Nov; 23(45):25490-25499. PubMed ID: 34494639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication: Fast and local predictors of the violation of the Stokes-Einstein law in polymers and supercooled liquids.
    Puosi F; Leporini D
    J Chem Phys; 2012 Jun; 136(21):211101. PubMed ID: 22697520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion dynamics of supercooled water modeled with the cage-jump motion and hydrogen-bond rearrangement.
    Kikutsuji T; Kim K; Matubayasi N
    J Chem Phys; 2019 May; 150(20):204502. PubMed ID: 31153185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-dependent Stokes-Einstein relation in supercooled liquids.
    Zangi R; Kaufman LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051501. PubMed ID: 17677067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water.
    Mazza MG; Giovambattista N; Stanley HE; Starr FW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031203. PubMed ID: 17930235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation lines and the breakdown of Stokes-Einstein relations in supercooled liquids.
    Jung Y; Garrahan JP; Chandler D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061205. PubMed ID: 15244552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-monotonic composition dependence of the breakdown of Stokes-Einstein relation for water in aqueous solutions of ethanol and 1-propanol: explanation using translational jump-diffusion approach.
    Dueby S; Dubey V; Indra S; Daschakraborty S
    Phys Chem Chem Phys; 2022 Aug; 24(31):18738-18750. PubMed ID: 35900000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservation of the Stokes-Einstein relation in supercooled water.
    Ren G; Wang Y
    Phys Chem Chem Phys; 2021 Nov; 23(43):24541-24544. PubMed ID: 34724013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid.
    Puosi F; Jakse N; Pasturel A
    J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step relaxation and the breakdown of the Stokes-Einstein relation in glass-forming liquids.
    Mei B; Lu Y; An L; Wang ZG
    Phys Rev E; 2019 Nov; 100(5-1):052607. PubMed ID: 31869984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.