These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 34551784)
1. Hypofibrinolysis in type 2 diabetes and its clinical implications: from mechanisms to pharmacological modulation. Bryk-Wiązania AH; Undas A Cardiovasc Diabetol; 2021 Sep; 20(1):191. PubMed ID: 34551784 [TBL] [Abstract][Full Text] [Related]
2. Predictors of neutrophil extracellular traps markers in type 2 diabetes mellitus: associations with a prothrombotic state and hypofibrinolysis. Bryk AH; Prior SM; Plens K; Konieczynska M; Hohendorff J; Malecki MT; Butenas S; Undas A Cardiovasc Diabetol; 2019 Apr; 18(1):49. PubMed ID: 30992036 [TBL] [Abstract][Full Text] [Related]
3. The influence of type 2 diabetes on fibrin clot properties in patients with coronary artery disease. Neergaard-Petersen S; Hvas AM; Kristensen SD; Grove EL; Larsen SB; Phoenix F; Kurdee Z; Grant PJ; Ajjan RA Thromb Haemost; 2014 Dec; 112(6):1142-50. PubMed ID: 25187394 [TBL] [Abstract][Full Text] [Related]
4. Prolonged duration of type 2 diabetes is associated with increased thrombin generation, prothrombotic fibrin clot phenotype and impaired fibrinolysis. Konieczynska M; Fil K; Bazanek M; Undas A Thromb Haemost; 2014 Apr; 111(4):685-93. PubMed ID: 24306139 [TBL] [Abstract][Full Text] [Related]
5. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Kearney K; Tomlinson D; Smith K; Ajjan R Cardiovasc Diabetol; 2017 Mar; 16(1):34. PubMed ID: 28279217 [TBL] [Abstract][Full Text] [Related]
6. Fibrin clot properties in cardiovascular disease: from basic mechanisms to clinical practice. Ząbczyk M; Ariëns RAS; Undas A Cardiovasc Res; 2023 Mar; 119(1):94-111. PubMed ID: 36662542 [TBL] [Abstract][Full Text] [Related]
7. Plasma fibrin clot properties and cardiovascular mortality in patients with type 2 diabetes: a long-term follow-up study. Bryk AH; Konieczyńska M; Polak M; Plicner D; Bochenek M; Undas A Cardiovasc Diabetol; 2021 Feb; 20(1):47. PubMed ID: 33602240 [TBL] [Abstract][Full Text] [Related]
8. A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Hess K; Alzahrani SH; Mathai M; Schroeder V; Carter AM; Howell G; Koko T; Strachan MW; Price JF; Smith KA; Grant PJ; Ajjan RA Diabetologia; 2012 Apr; 55(4):1103-13. PubMed ID: 21918806 [TBL] [Abstract][Full Text] [Related]
9. BβArg448Lys polymorphism is associated with altered fibrin clot structure and fibrinolysis in type 2 diabetes. Greenhalgh KA; Strachan MW; Alzahrani S; Baxter PD; Standeven KF; Storey RF; Ariens RA; Grant PJ; Price JF; Ajjan RA Thromb Haemost; 2017 Jan; 117(2):295-302. PubMed ID: 27929198 [TBL] [Abstract][Full Text] [Related]
10. Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus. Soma P; Pretorius E Cardiovasc Diabetol; 2015 Jul; 14():96. PubMed ID: 26228646 [TBL] [Abstract][Full Text] [Related]
11. Maturity onset diabetes of the young and fibrin-related thrombosis risk. Sagar RC; Phoenix F; Thanabalasingham G; Naseem K; Ajjan RA; Owen KR Diab Vasc Dis Res; 2020; 17(6):1479164120963048. PubMed ID: 33334146 [TBL] [Abstract][Full Text] [Related]
12. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Kaur R; Kaur M; Singh J Cardiovasc Diabetol; 2018 Aug; 17(1):121. PubMed ID: 30170601 [TBL] [Abstract][Full Text] [Related]
13. The myeloperoxidase product, hypochlorous acid, reduces thrombus formation under flow and attenuates clot retraction and fibrinolysis in human blood. Misztal T; Golaszewska A; Tomasiak-Lozowska MM; Iwanicka M; Marcinczyk N; Leszczynska A; Chabielska E; Rusak T Free Radic Biol Med; 2019 Sep; 141():426-437. PubMed ID: 31279970 [TBL] [Abstract][Full Text] [Related]
14. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Hess K; Alzahrani SH; Price JF; Strachan MW; Oxley N; King R; Gamlen T; Schroeder V; Baxter PD; Ajjan RA Diabetologia; 2014 Aug; 57(8):1737-41. PubMed ID: 24838681 [TBL] [Abstract][Full Text] [Related]
15. Effects of Diabetes Mellitus on Fibrin Clot Structure and Mechanics in a Model of Acute Neutrophil Extracellular Traps (NETs) Formation. de Vries JJ; Hoppenbrouwers T; Martinez-Torres C; Majied R; Özcan B; van Hoek M; Leebeek FWG; Rijken DC; Koenderink GH; de Maat MPM Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32993159 [TBL] [Abstract][Full Text] [Related]
16. Cell-Free DNA Modulates Clot Structure and Impairs Fibrinolysis in Sepsis. Gould TJ; Vu TT; Stafford AR; Dwivedi DJ; Kim PY; Fox-Robichaud AE; Weitz JI; Liaw PC Arterioscler Thromb Vasc Biol; 2015 Dec; 35(12):2544-53. PubMed ID: 26494232 [TBL] [Abstract][Full Text] [Related]
17. A new assay for global fibrinolysis capacity (GFC): Investigating a critical system regulating hemostasis and thrombosis and other extravascular functions. Amiral J; Laroche M; Seghatchian J Transfus Apher Sci; 2018 Feb; 57(1):118-126. PubMed ID: 29525568 [TBL] [Abstract][Full Text] [Related]
18. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Undas A; Wiek I; Stêpien E; Zmudka K; Tracz W Diabetes Care; 2008 Aug; 31(8):1590-5. PubMed ID: 18487475 [TBL] [Abstract][Full Text] [Related]
19. Altered plasma fibrin clot properties in essential thrombocythemia. Małecki R; Gacka M; Kuliszkiewicz-Janus M; Jakobsche-Policht U; Kwiatkowski J; Adamiec R; Undas A Platelets; 2016; 27(2):110-6. PubMed ID: 25989112 [TBL] [Abstract][Full Text] [Related]
20. Plasma Protein Oxidation as a Determinant of Impaired Fibrinolysis in Type 2 Diabetes. Bryk AH; Konieczynska M; Rostoff P; Broniatowska E; Hohendorff J; Malecki MT; Undas A Thromb Haemost; 2019 Feb; 119(2):213-222. PubMed ID: 30605917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]