These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34552472)

  • 1. Generation of Direct-, Retrograde-, and Source-Wave Gaits in Multi-Legged Locomotion in a Decentralized Manner via Embodied Sensorimotor Interaction.
    Ambe Y; Aoi S; Tsuchiya K; Matsuno F
    Front Neural Circuits; 2021; 15():706064. PubMed ID: 34552472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
    Ambe Y; Aoi S; Nachstedt T; Manoonpong P; Wörgötter F; Matsuno F
    PLoS One; 2018; 13(2):e0192469. PubMed ID: 29489831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decentralized control mechanism underlying interlimb coordination of millipedes.
    Kano T; Sakai K; Yasui K; Owaki D; Ishiguro A
    Bioinspir Biomim; 2017 Apr; 12(3):036007. PubMed ID: 28375850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general locomotion control framework for multi-legged locomotors.
    Chong B; O Aydin Y; Rieser JM; Sartoretti G; Wang T; Whitman J; Kaba A; Aydin E; McFarland C; Diaz Cruz K; Rankin JW; Michel KB; Nicieza A; Hutchinson JR; Choset H; Goldman DI
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35533656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
    Aoi S; Manoonpong P; Ambe Y; Matsuno F; Wörgötter F
    Front Neurorobot; 2017; 11():39. PubMed ID: 28878645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait transitions and modular organization of mammal locomotion.
    Maes L; Abourachid A
    J Exp Biol; 2013 Jun; 216(Pt 12):2257-65. PubMed ID: 23531814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
    Grabowska M; Godlewska E; Schmidt J; Daun-Gruhn S
    J Exp Biol; 2012 Dec; 215(Pt 24):4255-66. PubMed ID: 22972892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Centipede Walking via Synergetic Coupling Between Decentralized Control and Flexible Body Dynamics.
    Yasui K; Takano S; Kano T; Ishiguro A
    Front Robot AI; 2022; 9():797566. PubMed ID: 35450166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central pattern generators for bipedal locomotion.
    Pinto CM; Golubitsky M
    J Math Biol; 2006 Sep; 53(3):474-89. PubMed ID: 16874500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Gait Transitions of Sprawling Quadruped Locomotion by Sensory-Driven Body-Limb Coordination Mechanisms.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Front Neurorobot; 2021; 15():645731. PubMed ID: 34393748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CPG-Based Gait Generation of the Curved-Leg Hexapod Robot with Smooth Gait Transition.
    Bai L; Hu H; Chen X; Sun Y; Ma C; Zhong Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31455002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hysteresis in the metachronal-tripod gait transition of insects: a modeling study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012717. PubMed ID: 23944500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching.
    Badri-Spröwitz A; Aghamaleki Sarvestani A; Sitti M; Daley MA
    Sci Robot; 2022 Mar; 7(64):eabg4055. PubMed ID: 35294220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study.
    Fukuoka Y; Habu Y; Fukui T
    Sci Rep; 2015 Feb; 5():8169. PubMed ID: 25639661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.