These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34552472)

  • 21. Fundamental understanding of millipede morphology and locomotion dynamics.
    Garcia A; Krummel G; Priya S
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33007767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Template Model Explains Jerboa Gait Transitions Across a Broad Range of Speeds.
    Ding J; Moore TY; Gan Z
    Front Bioeng Biotechnol; 2022; 10():804826. PubMed ID: 35600899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach.
    Owaki D; Goda M; Miyazawa S; Ishiguro A
    Front Neurorobot; 2017; 11():29. PubMed ID: 28649197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climbing favours the tripod gait over alternative faster insect gaits.
    Ramdya P; Thandiackal R; Cherney R; Asselborn T; Benton R; Ijspeert AJ; Floreano D
    Nat Commun; 2017 Feb; 8():14494. PubMed ID: 28211509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.
    Ting LH; Raasch CC; Brown DA; Kautz SA; Zajac FE
    J Neurophysiol; 1998 Sep; 80(3):1341-51. PubMed ID: 9744943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sprawling Quadruped Robot Driven by Decentralized Control With Cross-Coupled Sensory Feedback Between Legs and Trunk.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Front Neurorobot; 2020; 14():607455. PubMed ID: 33488377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans.
    Grabowska M; Toth TI; Smarandache-Wellmann C; Daun-Gruhn S
    J Comput Neurosci; 2015 Jun; 38(3):601-16. PubMed ID: 25904469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
    Srinivasan M
    J R Soc Interface; 2011 Jan; 8(54):74-98. PubMed ID: 20542957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Speed dependent phase shifts and gait changes in cockroaches running on substrates of different slipperiness.
    Weihmann T; Brun PG; Pycroft E
    Front Zool; 2017; 14():54. PubMed ID: 29225659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system.
    Borgmann A; Hooper SL; Büschges A
    J Neurosci; 2009 Mar; 29(9):2972-83. PubMed ID: 19261892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving horizontal plane locomotion via leg angle control.
    Wickramasuriya A; Schmitt J
    J Theor Biol; 2009 Feb; 256(3):414-27. PubMed ID: 18951907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.
    Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K
    J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Common mechanics of mode switching in locomotion of limbless and legged animals.
    Kuroda S; Kunita I; Tanaka Y; Ishiguro A; Kobayashi R; Nakagaki T
    J R Soc Interface; 2014 Jun; 11(95):20140205. PubMed ID: 24718452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of the stability of generalized wave gaits.
    Zhang CD; Song SM
    Math Biosci; 1993 May; 115(1):1-32. PubMed ID: 8507986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homing tasks performed using variations of crawling gait patterns reveal a role for attention in podokinetic path integration.
    Harrison SJ; Davis TJ
    Exp Brain Res; 2023 Mar; 241(3):825-838. PubMed ID: 36746798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait control in a soft robot by sensing interactions with the environment using self-deformation.
    Umedachi T; Kano T; Ishiguro A; Trimmer BA
    R Soc Open Sci; 2016 Dec; 3(12):160766. PubMed ID: 28083114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An analytical estimation of the energy cost for legged locomotion.
    Nishii J
    J Theor Biol; 2006 Feb; 238(3):636-45. PubMed ID: 16084529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.