These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34552472)

  • 41. Linking Gait Dynamics to Mechanical Cost of Legged Locomotion.
    Lee DV; Harris SL
    Front Robot AI; 2018; 5():111. PubMed ID: 33500990
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leg recirculation in horizontal plane locomotion.
    Wickramasuriya A; Schmitt J
    Biol Cybern; 2009 Oct; 101(4):247-63. PubMed ID: 19787371
    [TBL] [Abstract][Full Text] [Related]  

  • 43. All common bipedal gaits emerge from a single passive model.
    Gan Z; Yesilevskiy Y; Zaytsev P; Remy CD
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphological and control criteria for self-stable underwater hopping.
    Calisti M; Laschi C
    Bioinspir Biomim; 2017 Nov; 13(1):016001. PubMed ID: 28976367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental study of coordination patterns during unsteady locomotion in mammals.
    Abourachid A; Herbin M; Hackert R; Maes L; Martin V
    J Exp Biol; 2007 Jan; 210(Pt 2):366-72. PubMed ID: 17210971
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simple robot suggests physical interlimb communication is essential for quadruped walking.
    Owaki D; Kano T; Nagasawa K; Tero A; Ishiguro A
    J R Soc Interface; 2013 Jan; 10(78):20120669. PubMed ID: 23097501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leg force interference in polypedal locomotion.
    Weihmann T
    Sci Adv; 2018 Sep; 4(9):eaat3721. PubMed ID: 30191178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Body-limb coordination mechanism underlying speed-dependent gait transitions in sea roaches.
    Kano T; Ikeshita Y; Fukuhara A; Ishiguro A
    Sci Rep; 2019 Feb; 9(1):2848. PubMed ID: 30808952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interlimb coordination, gait, and neural control of quadrupedalism in chimpanzees.
    Shapiro LJ; Anapol FC; Jungers WL
    Am J Phys Anthropol; 1997 Feb; 102(2):177-86. PubMed ID: 9066899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Locomotor Sub-functions for Control of Assistive Wearable Robots.
    Sharbafi MA; Seyfarth A; Zhao G
    Front Neurorobot; 2017; 11():44. PubMed ID: 28928650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes.
    Hale ME; Day RD; Thorsen DH; Westneat MW
    J Exp Biol; 2006 Oct; 209(Pt 19):3708-18. PubMed ID: 16985188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Comparative Study of Adaptive Interlimb Coordination Mechanisms for Self-Organized Robot Locomotion.
    Sun T; Xiong X; Dai Z; Owaki D; Manoonpong P
    Front Robot AI; 2021; 8():638684. PubMed ID: 33912596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electronics-free pneumatic circuits for controlling soft-legged robots.
    Drotman D; Jadhav S; Sharp D; Chan C; Tolley MT
    Sci Robot; 2021 Feb; 6(51):. PubMed ID: 34043527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury.
    Moraud EM; von Zitzewitz J; Miehlbradt J; Wurth S; Formento E; DiGiovanna J; Capogrosso M; Courtine G; Micera S
    Sci Rep; 2018 Jan; 8(1):76. PubMed ID: 29311614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fundamental mechanism of legged locomotion with hip torque and leg damping.
    Shen ZH; Seipel JE
    Bioinspir Biomim; 2012 Dec; 7(4):046010. PubMed ID: 22989956
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A neuro-mechanical model of legged locomotion: single leg control.
    Wadden T; Ekeberg O
    Biol Cybern; 1998 Aug; 79(2):161-73. PubMed ID: 9791936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of arm and leg movement during human locomotion.
    Zehr EP; Duysens J
    Neuroscientist; 2004 Aug; 10(4):347-61. PubMed ID: 15271262
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
    Owaki D; Ishiguro A
    Sci Rep; 2017 Mar; 7(1):277. PubMed ID: 28325917
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data?
    Srinivasan M; Holmes P
    J Theor Biol; 2008 Nov; 255(1):1-7. PubMed ID: 18671984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.