These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 3455261)

  • 1. The Na+-Ca2+ exchange mechanism as a regulator of post rest contractions in cardiac muscle.
    Abreu GR; Vassallo DV; Mill JG
    Braz J Med Biol Res; 1987; 20(6):817-20. PubMed ID: 3455261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underlying the genesis of post-rest contractions in cardiac muscle.
    Mill JG; Vassallo DV; Leite CM
    Braz J Med Biol Res; 1992; 25(4):399-408. PubMed ID: 1342217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the sarcoplasmic reticulum on the inotropic responses of the rat myocardium resulting from changes in rate and rhythm.
    Mill JG; Vassallo DV; Leite CM; Campagnaro P
    Braz J Med Biol Res; 1994 Jun; 27(6):1455-65. PubMed ID: 7894361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of aging on the control of contractile force by Na(+)-Ca2+ exchange in rat papillary muscle.
    Abete P; Ferrara N; Cioppa A; Ferrara P; Bianco S; Calabrese C; Napoli C; Rengo F
    J Gerontol A Biol Sci Med Sci; 1996 Sep; 51(5):M251-9. PubMed ID: 8808998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behavior of rest contractions in cardiac muscle.
    Vassallo DV; Mill JG
    Acta Physiol Pharmacol Latinoam; 1988; 38(1):87-97. PubMed ID: 3201999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monensin-induced reversal of positive force-frequency relationship in cardiac muscle: role of intracellular sodium in rest-dependent potentiation of contraction.
    Mubagwa K; Lin W; Sipido K; Bosteels S; Flameng W
    J Mol Cell Cardiol; 1997 Mar; 29(3):977-89. PubMed ID: 9152859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for hypothermia-induced increase in contractile force studied by mechanical restitution and post-rest contractions in guinea-pig papillary muscle.
    Bjørnstad H; Tande PM; Refsum H
    Acta Physiol Scand; 1993 Jul; 148(3):253-64. PubMed ID: 7692697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of verapamil on potentiated rest contractions in the rat ventricular myocardium.
    Leite CM; Vassallo DV; Mill JG
    Braz J Med Biol Res; 1988; 21(4):859-62. PubMed ID: 3240384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of myocardial contractions activated under depolarizing conditions.
    Vassallo DV; Mill JG
    Braz J Med Biol Res; 1986; 19(3):439-49. PubMed ID: 3594010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of contractile performance in the myocardium from unilaterally nephrectomized rats.
    Vassallo DV; Vasquez EC; Cabral AM
    Braz J Med Biol Res; 1987; 20(5):627-9. PubMed ID: 3452456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sodium on calcium-dependent force in unstimulated rat cardiac muscle.
    Walford GD; Gerstenblith G; Lakatta EG
    Am J Physiol; 1984 Feb; 246(2 Pt 2):H222-31. PubMed ID: 6696133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying the genesis of post-extrasystolic potentiation in rat cardiac muscle.
    Vassallo DV; Lima EQ; Campagnaro P; Faria AN; Mill JG
    Braz J Med Biol Res; 1995 Mar; 28(3):377-83. PubMed ID: 8520535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rest-dependence of twitch amplitude and sarcoplasmic reticulum calcium content in the developing rat myocardium.
    Ferraz SA; Bassani JW; Bassani RA
    J Mol Cell Cardiol; 2001 Apr; 33(4):711-22. PubMed ID: 11273724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Na+-independent Cl--HCO3- exchange on the slow force response to myocardial stretch.
    Cingolani HE; Chiappe GE; Ennis IL; Morgan PG; Alvarez BV; Casey JR; Dulce RA; Pérez NG; Camilión de Hurtado MC
    Circ Res; 2003 Nov; 93(11):1082-8. PubMed ID: 14576196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action potential duration and contraction after rest at room temperature in guinea pig papillary muscle.
    Migliaro ER; Michelini M; Durán HN
    Acta Physiol Pharmacol Ther Latinoam; 1997; 47(2):107-18. PubMed ID: 9339240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of mercury on the contractility of isolated rat cardiac muscle.
    Oliveira EM; Vassallo DV
    Braz J Med Biol Res; 1992; 25(10):1037-40. PubMed ID: 1342826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of low-Na perfusion and D-600 on 45Ca exchange and contractions in the ventricular myocardium of the guinea-pig heart.
    Pytkowski B; Lewartowski B
    Acta Physiol Pol; 1983; 34(5-6):483-91. PubMed ID: 6093433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium and KB-R7943 effects on mechanics and energetics of rat heart muscle.
    Bonazzola P; Egido P; Marengo FD; Savio-Galimberti E; Ponce-Hornos JE
    Acta Physiol Scand; 2002 Sep; 176(1):1-11. PubMed ID: 12193213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible relationship between mechanical response, action potential repolarization and Na/Ca exchange in myocardium of normotensive (NWR) and spontaneously hypertensive rats (SHR).
    Hopp HH
    Biomed Biochim Acta; 1987; 46(8-9):S407-10. PubMed ID: 3435502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile function of papillary muscle from rats with different infarct size after beta-adrenergic blockade and ACE-inhibition.
    Wagner KD; Theres H; Born A; Strube S; Wunderlich N; Pfitzer G; Baumann G; Günther J
    J Mol Cell Cardiol; 1997 Nov; 29(11):2941-51. PubMed ID: 9405169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.