BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 34552932)

  • 1. Glucose Metabolism and Glucose Transporters in Breast Cancer.
    Shin E; Koo JS
    Front Cell Dev Biol; 2021; 9():728759. PubMed ID: 34552932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate Metabolism and Immune Modulation in Breast Cancer: A Focused Review on Triple Negative Breast Tumors.
    Naik A; Decock J
    Front Oncol; 2020; 10():598626. PubMed ID: 33324565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype.
    Choi J; Kim DH; Jung WH; Koo JS
    Breast Cancer Res; 2013; 15(5):R78. PubMed ID: 24020991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic phenotypes in triple-negative breast cancer.
    Kim S; Kim DH; Jung WH; Koo JS
    Tumour Biol; 2013 Jun; 34(3):1699-712. PubMed ID: 23443971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic phenotype of bladder cancer.
    Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R
    Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer.
    Brauer HA; Makowski L; Hoadley KA; Casbas-Hernandez P; Lang LJ; Romàn-Pèrez E; D'Arcy M; Freemerman AJ; Perou CM; Troester MA
    Clin Cancer Res; 2013 Feb; 19(3):571-85. PubMed ID: 23236214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds.
    Barbosa AM; Martel F
    Cancers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamine metabolism in breast cancer and possible therapeutic targets.
    Li S; Zeng H; Fan J; Wang F; Xu C; Li Y; Tu J; Nephew KP; Long X
    Biochem Pharmacol; 2023 Apr; 210():115464. PubMed ID: 36849062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer.
    Varghese E; Samuel SM; Líšková A; Samec M; Kubatka P; Büsselberg D
    Cancers (Basel); 2020 Aug; 12(8):. PubMed ID: 32806533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer.
    Delgir S; Bastami M; Ilkhani K; Safi A; Seif F; Alivand MR
    Mutat Res Rev Mutat Res; 2021; 787():108366. PubMed ID: 34083056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pentose Phosphate Pathway in Cancer: Regulation and Therapeutic Opportunities.
    Ghanem N; El-Baba C; Araji K; El-Khoury R; Usta J; Darwiche N
    Chemotherapy; 2021; 66(5-6):179-191. PubMed ID: 34775382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local production of lactate, ribose phosphate, and amino acids within human triple-negative breast cancer.
    Ghergurovich JM; Lang JD; Levin MK; Briones N; Facista SJ; Mueller C; Cowan AJ; McBride MJ; Rodriguez ESR; Killian A; Dao T; Lamont J; Barron A; Su X; Hendricks WPD; Espina V; Von Hoff DD; O'Shaughnessy J; Rabinowitz JD
    Med; 2021 Jun; 2(6):736-754. PubMed ID: 34223403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue.
    Sotgia F; Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Philp NJ; Pestell RG; Lisanti MP
    Cell Cycle; 2012 Apr; 11(7):1445-54. PubMed ID: 22395432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino Acid Transporters and Glutamine Metabolism in Breast Cancer.
    Cha YJ; Kim ES; Koo JS
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling.
    Sun K; Tang S; Hou Y; Xi L; Chen Y; Yin J; Peng M; Zhao M; Cui X; Liu M
    EBioMedicine; 2019 Mar; 41():370-383. PubMed ID: 30799198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers.
    Witkiewicz AK; Whitaker-Menezes D; Dasgupta A; Philp NJ; Lin Z; Gandara R; Sneddon S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Mar; 11(6):1108-17. PubMed ID: 22313602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between the Warburg effect and progression of triple-negative breast cancer.
    Liu S; Li Y; Yuan M; Song Q; Liu M
    Front Oncol; 2022; 12():1060495. PubMed ID: 36776368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Transcription Coregulator RIP140 Inhibits Cancer Cell Proliferation by Targeting the Pentose Phosphate Pathway.
    Jacquier V; Gitenay D; Cavaillès V; Teyssier C
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.