These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34554247)

  • 1. Quantitative assessment of engineered Cas9 variants for target specificity enhancement by single-molecule reaction pathway analysis.
    Bak SY; Jung Y; Park J; Sung K; Jang HK; Bae S; Kim SK
    Nucleic Acids Res; 2021 Nov; 49(19):11312-11322. PubMed ID: 34554247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single molecule analysis of effects of non-canonical guide RNAs and specificity-enhancing mutations on Cas9-induced DNA unwinding.
    Okafor IC; Singh D; Wang Y; Jung M; Wang H; Mallon J; Bailey S; Lee JK; Ha T
    Nucleic Acids Res; 2019 Dec; 47(22):11880-11888. PubMed ID: 31713616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of DNA target searching and cleavage by CRISPR-Cas12a.
    Jeon Y; Choi YH; Jang Y; Yu J; Goo J; Lee G; Jeong YK; Lee SH; Kim IS; Kim JS; Jeong C; Lee S; Bae S
    Nat Commun; 2018 Jul; 9(1):2777. PubMed ID: 30018371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA.
    Liu MS; Gong S; Yu HH; Jung K; Johnson KA; Taylor DW
    Nat Commun; 2020 Jul; 11(1):3576. PubMed ID: 32681021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System.
    Wilkinson M; Drabavicius G; Silanskas A; Gasiunas G; Siksnys V; Wigley DB
    Mol Cell; 2019 Jul; 75(1):90-101.e5. PubMed ID: 31080012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time observation of flexible domain movements in CRISPR-Cas9.
    Osuka S; Isomura K; Kajimoto S; Komori T; Nishimasu H; Shima T; Nureki O; Uemura S
    EMBO J; 2018 May; 37(10):. PubMed ID: 29650679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases.
    Xiong T; Meister GE; Workman RE; Kato NC; Spellberg MJ; Turker F; Timp W; Ostermeier M; Novina CD
    Sci Rep; 2017 Jul; 7(1):6732. PubMed ID: 28751638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the sequence-specific cleavage activity of Cas9 variants.
    Kim N; Kim HK; Lee S; Seo JH; Choi JW; Park J; Min S; Yoon S; Cho SR; Kim HH
    Nat Biotechnol; 2020 Nov; 38(11):1328-1336. PubMed ID: 32514125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vital insights into prokaryotic genome compaction by nucleoid-associated protein (NAP) and illustration of DNA flexure angles at single-molecule resolution.
    Purkait D; Bandyopadhyay D; Mishra PP
    Int J Biol Macromol; 2021 Feb; 171():100-111. PubMed ID: 33418050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches.
    Bratovič M; Fonfara I; Chylinski K; Gálvez EJC; Sullivan TJ; Boerno S; Timmermann B; Boettcher M; Charpentier E
    Nat Chem Biol; 2020 May; 16(5):587-595. PubMed ID: 32123387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking sites inside Cas9 for adenine base editing diversification and RNA off-target elimination.
    Li S; Yuan B; Cao J; Chen J; Chen J; Qiu J; Zhao XM; Wang X; Qiu Z; Cheng TL
    Nat Commun; 2020 Nov; 11(1):5827. PubMed ID: 33203850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic in vitro specificity profiling reveals nicking defects in natural and engineered CRISPR-Cas9 variants.
    Murugan K; Suresh SK; Seetharam AS; Severin AJ; Sashital DG
    Nucleic Acids Res; 2021 Apr; 49(7):4037-4053. PubMed ID: 33744974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET.
    Yang M; Peng S; Sun R; Lin J; Wang N; Chen C
    Cell Rep; 2018 Jan; 22(2):372-382. PubMed ID: 29320734
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Acharya S; Mishra A; Paul D; Ansari AH; Azhar M; Kumar M; Rauthan R; Sharma N; Aich M; Sinha D; Sharma S; Jain S; Ray A; Jain S; Ramalingam S; Maiti S; Chakraborty D
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20959-20968. PubMed ID: 31570623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SMOOT libraries and phage-induced directed evolution of Cas9 to engineer reduced off-target activity.
    Cerchione D; Loveluck K; Tillotson EL; Harbinski F; DaSilva J; Kelley CP; Keston-Smith E; Fernandez CA; Myer VE; Jayaram H; Steinberg BE
    PLoS One; 2020; 15(4):e0231716. PubMed ID: 32298334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis.
    Singh D; Wang Y; Mallon J; Yang O; Fei J; Poddar A; Ceylan D; Bailey S; Ha T
    Nat Struct Mol Biol; 2018 Apr; 25(4):347-354. PubMed ID: 29622787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule FRET studies of Cas9 endonuclease.
    Globyte V; Joo C
    Methods Enzymol; 2019; 616():313-335. PubMed ID: 30691649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site residue identity regulates cleavage preference of LAGLIDADG homing endonucleases.
    McMurrough TA; Brown CM; Zhang K; Hausner G; Junop MS; Gloor GB; Edgell DR
    Nucleic Acids Res; 2018 Dec; 46(22):11990-12007. PubMed ID: 30357419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage.
    Kulcsár PI; Tálas A; Huszár K; Ligeti Z; Tóth E; Weinhardt N; Fodor E; Welker E
    Genome Biol; 2017 Oct; 18(1):190. PubMed ID: 28985763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
    Sternberg SH; Redding S; Jinek M; Greene EC; Doudna JA
    Nature; 2014 Mar; 507(7490):62-7. PubMed ID: 24476820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.