These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34554320)

  • 1. SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier.
    Wei X; Liu L; Lu C; Yuan F; Han G; Wang B
    Planta; 2021 Sep; 254(4):81. PubMed ID: 34554320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SbCASP-LP1C1 improves salt exclusion by enhancing the root apoplastic barrier.
    Liu L; Wei X; Yang Z; Yuan F; Han G; Guo J; Wang B
    Plant Mol Biol; 2023 Jan; 111(1-2):73-88. PubMed ID: 36372837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers.
    Wei X; Yang Z; Han G; Zhao X; Yin S; Yuan F; Wang B
    Plant Signal Behav; 2020 Mar; 15(3):1724465. PubMed ID: 32024414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis.
    Song Y; Li J; Sui Y; Han G; Zhang Y; Guo S; Sui N
    Plant Mol Biol; 2020 Apr; 102(6):603-614. PubMed ID: 32052233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and Transcriptional Analyses Provide Insight into Maintaining Ion Homeostasis of Sweet Sorghum under Salt Stress.
    Guo H; Nie CY; Li Z; Kang J; Wang XL; Cui YN
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of Arabidopsis thaliana.
    Guo Y; Song Y; Zheng H; Zhang Y; Guo J; Sui N
    J Agric Food Chem; 2018 Jun; 66(24):5992-6002. PubMed ID: 29847118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system.
    Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y
    PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment.
    Su M; Li XF; Ma XY; Peng XJ; Zhao AG; Cheng LQ; Chen SY; Liu GS
    Plant Sci; 2011 Dec; 181(6):652-9. PubMed ID: 21958707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum.
    Wang F; Sun Y; Shi Z
    Microorganisms; 2019 Aug; 7(9):. PubMed ID: 31450847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench.
    Ukwatta J; Pabuayon ICM; Park J; Chen J; Chai X; Zhang H; Zhu JK; Xin Z; Shi H
    Planta; 2021 Oct; 254(5):98. PubMed ID: 34657208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physio-chemical and co-expression network analysis associated with salt stress in sorghum.
    Choi S; Kang Y; Lee S; Jeon DH; Seo S; Lee TH; Kim C
    Front Biosci (Landmark Ed); 2022 Feb; 27(2):55. PubMed ID: 35226998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition.
    Oliveira FDB; Miranda RS; Araújo GDS; Coelho DG; Lobo MDP; Paula-Marinho SO; Lopes LS; Monteiro-Moreira ACO; Carvalho HH; Gomes-Filho E
    Plant Physiol Biochem; 2020 Sep; 154():723-734. PubMed ID: 32763797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of salt stress in
    Rajabi Dehnavi A; Piernik A; Ludwiczak A; Szymańska S; Ciarkowska A; Cárdenas Pérez S; Hrynkiewicz K
    Front Plant Sci; 2024; 15():1458540. PubMed ID: 39376236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana.
    Ma J; Wang LY; Dai JX; Wang Y; Lin D
    BMC Plant Biol; 2021 Jan; 21(1):11. PubMed ID: 33407148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.
    Sui N; Yang Z; Liu M; Wang B
    BMC Genomics; 2015 Jul; 16(1):534. PubMed ID: 26186930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic and physiological responses to salt exposure in Sorghum reveal diversity among domesticated landraces.
    Henderson AN; Crim PM; Cumming JR; Hawkins JS
    Am J Bot; 2020 Jul; 107(7):983-992. PubMed ID: 32648285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize.
    Wang Y; Cao Y; Liang X; Zhuang J; Wang X; Qin F; Jiang C
    Nat Commun; 2022 Apr; 13(1):2222. PubMed ID: 35468878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding salinity stress responses in sorghum: exploring genotype variability and salt tolerance mechanisms.
    Rajabi Dehnavi A; Zahedi M; Piernik A
    Front Plant Sci; 2023; 14():1296286. PubMed ID: 38269142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl- and K+ ions in relation to salinity.
    Almodares A; Hadi MR; Kholdebarin B; Samedani B; Kharazian ZA
    J Environ Biol; 2014 Jul; 35(4):733-9. PubMed ID: 25004761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage.
    Ding T; Yang Z; Wei X; Yuan F; Yin S; Wang B
    Funct Plant Biol; 2018 Oct; 45(10):1073-1081. PubMed ID: 32291006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.