BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34554320)

  • 1. SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier.
    Wei X; Liu L; Lu C; Yuan F; Han G; Wang B
    Planta; 2021 Sep; 254(4):81. PubMed ID: 34554320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SbCASP-LP1C1 improves salt exclusion by enhancing the root apoplastic barrier.
    Liu L; Wei X; Yang Z; Yuan F; Han G; Guo J; Wang B
    Plant Mol Biol; 2023 Jan; 111(1-2):73-88. PubMed ID: 36372837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers.
    Wei X; Yang Z; Han G; Zhao X; Yin S; Yuan F; Wang B
    Plant Signal Behav; 2020 Mar; 15(3):1724465. PubMed ID: 32024414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis.
    Song Y; Li J; Sui Y; Han G; Zhang Y; Guo S; Sui N
    Plant Mol Biol; 2020 Apr; 102(6):603-614. PubMed ID: 32052233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and Transcriptional Analyses Provide Insight into Maintaining Ion Homeostasis of Sweet Sorghum under Salt Stress.
    Guo H; Nie CY; Li Z; Kang J; Wang XL; Cui YN
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of Arabidopsis thaliana.
    Guo Y; Song Y; Zheng H; Zhang Y; Guo J; Sui N
    J Agric Food Chem; 2018 Jun; 66(24):5992-6002. PubMed ID: 29847118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system.
    Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y
    PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment.
    Su M; Li XF; Ma XY; Peng XJ; Zhao AG; Cheng LQ; Chen SY; Liu GS
    Plant Sci; 2011 Dec; 181(6):652-9. PubMed ID: 21958707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum.
    Wang F; Sun Y; Shi Z
    Microorganisms; 2019 Aug; 7(9):. PubMed ID: 31450847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench.
    Ukwatta J; Pabuayon ICM; Park J; Chen J; Chai X; Zhang H; Zhu JK; Xin Z; Shi H
    Planta; 2021 Oct; 254(5):98. PubMed ID: 34657208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physio-chemical and co-expression network analysis associated with salt stress in sorghum.
    Choi S; Kang Y; Lee S; Jeon DH; Seo S; Lee TH; Kim C
    Front Biosci (Landmark Ed); 2022 Feb; 27(2):55. PubMed ID: 35226998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition.
    Oliveira FDB; Miranda RS; Araújo GDS; Coelho DG; Lobo MDP; Paula-Marinho SO; Lopes LS; Monteiro-Moreira ACO; Carvalho HH; Gomes-Filho E
    Plant Physiol Biochem; 2020 Sep; 154():723-734. PubMed ID: 32763797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana.
    Ma J; Wang LY; Dai JX; Wang Y; Lin D
    BMC Plant Biol; 2021 Jan; 21(1):11. PubMed ID: 33407148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.
    Sui N; Yang Z; Liu M; Wang B
    BMC Genomics; 2015 Jul; 16(1):534. PubMed ID: 26186930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic and physiological responses to salt exposure in Sorghum reveal diversity among domesticated landraces.
    Henderson AN; Crim PM; Cumming JR; Hawkins JS
    Am J Bot; 2020 Jul; 107(7):983-992. PubMed ID: 32648285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize.
    Wang Y; Cao Y; Liang X; Zhuang J; Wang X; Qin F; Jiang C
    Nat Commun; 2022 Apr; 13(1):2222. PubMed ID: 35468878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding salinity stress responses in sorghum: exploring genotype variability and salt tolerance mechanisms.
    Rajabi Dehnavi A; Zahedi M; Piernik A
    Front Plant Sci; 2023; 14():1296286. PubMed ID: 38269142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the correlation between salt tolerance and yield: research advances and perspectives for salt-tolerant forage sorghum selection and genetic improvement.
    Amombo E; Ashilenje D; Hirich A; Kouisni L; Oukarroum A; Ghoulam C; El Gharous M; Nilahyane A
    Planta; 2022 Feb; 255(3):71. PubMed ID: 35190912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl- and K+ ions in relation to salinity.
    Almodares A; Hadi MR; Kholdebarin B; Samedani B; Kharazian ZA
    J Environ Biol; 2014 Jul; 35(4):733-9. PubMed ID: 25004761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage.
    Ding T; Yang Z; Wei X; Yuan F; Yin S; Wang B
    Funct Plant Biol; 2018 Oct; 45(10):1073-1081. PubMed ID: 32291006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.