These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 34554541)
1. Effect of water stress on the physiological and biochemical responses of two different Coleus (Plectranthus) species. Prathyusha IVSN; Chaitanya KV Biol Futur; 2019 Dec; 70(4):312-322. PubMed ID: 34554541 [TBL] [Abstract][Full Text] [Related]
2. Changes in the antioxidant intensities of seven different soybean (Glycine max (L.) Merr.) cultivars during drought. Easwar Rao D; Viswanatha Chaitanya K J Food Biochem; 2020 Feb; 44(2):e13118. PubMed ID: 31845369 [TBL] [Abstract][Full Text] [Related]
3. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Anjum SA; Tanveer M; Ashraf U; Hussain S; Shahzad B; Khan I; Wang L Environ Sci Pollut Res Int; 2016 Sep; 23(17):17132-41. PubMed ID: 27215981 [TBL] [Abstract][Full Text] [Related]
4. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants. Takshak S; Agrawal SB Plant Physiol Biochem; 2015 Dec; 97():124-38. PubMed ID: 26461242 [TBL] [Abstract][Full Text] [Related]
5. Impact of Folic Acid in Modulating Antioxidant Activity, Osmoprotectants, Anatomical Responses, and Photosynthetic Efficiency of Al-Elwany OAAI; Hemida KA; Abdel-Razek MA; El-Mageed TAA; El-Saadony MT; AbuQamar SF; El-Tarabily KA; Taha RS Front Plant Sci; 2022; 13():887091. PubMed ID: 35968108 [TBL] [Abstract][Full Text] [Related]
6. Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Rady MM; Boriek SHK; Abd El-Mageed TA; Seif El-Yazal MA; Ali EF; Hassan FAS; Abdelkhalik A Plants (Basel); 2021 Apr; 10(4):. PubMed ID: 33920494 [TBL] [Abstract][Full Text] [Related]
7. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Patel M; Fatnani D; Parida AK Plant Physiol Biochem; 2021 Sep; 166():290-313. PubMed ID: 34146784 [TBL] [Abstract][Full Text] [Related]
8. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Wang S; Liang D; Li C; Hao Y; Ma F; Shu H Plant Physiol Biochem; 2012 Feb; 51():81-9. PubMed ID: 22153243 [TBL] [Abstract][Full Text] [Related]
9. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. Zhang C; Shi S; Liu Z; Yang F; Yin G J Plant Physiol; 2019 Jan; 232():226-240. PubMed ID: 30537610 [TBL] [Abstract][Full Text] [Related]
10. Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Boaretto LF; Carvalho G; Borgo L; Creste S; Landell MG; Mazzafera P; Azevedo RA Plant Physiol Biochem; 2014 Jan; 74():165-75. PubMed ID: 24308986 [TBL] [Abstract][Full Text] [Related]
11. Phytochemical Profile and Antioxidant Activities of Ślusarczyk S; Cieślak A; Yanza YR; Szumacher-Strabel M; Varadyova Z; Stafiniak M; Wojnicz D; Matkowski A Molecules; 2021 May; 26(10):. PubMed ID: 34068950 [No Abstract] [Full Text] [Related]
12. Effect of drought stress on growth parameters, osmolyte contents, antioxidant enzymes and glycyrrhizin synthesis in licorice (Glycyrrhiza glabra L.) grown in the field. Hosseini MS; Samsampour D; Ebrahimi M; Abadía J; Khanahmadi M Phytochemistry; 2018 Dec; 156():124-134. PubMed ID: 30278303 [TBL] [Abstract][Full Text] [Related]
13. Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Jiang M; Zhang J Free Radic Res; 2002 Sep; 36(9):1001-15. PubMed ID: 12448826 [TBL] [Abstract][Full Text] [Related]
14. Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under high CO(2) concentrations. Schwanz P; Polle A J Exp Bot; 2001 Jan; 52(354):133-43. PubMed ID: 11181722 [TBL] [Abstract][Full Text] [Related]
15. Biochemical response of hybrid black poplar tissue culture (Populus × canadensis) on water stress. Popović BM; Štajner D; Ždero-Pavlović R; Tari I; Csiszár J; Gallé Á; Poór P; Galović V; Trudić B; Orlović S J Plant Res; 2017 May; 130(3):559-570. PubMed ID: 28243831 [TBL] [Abstract][Full Text] [Related]
16. Abscisic Acid and Glycine Betaine Mediated Tolerance Mechanisms under Drought Stress and Recovery in Axonopus compressus: A New Insight. Nawaz M; Wang Z Sci Rep; 2020 Apr; 10(1):6942. PubMed ID: 32332777 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Chugh V; Kaur N; Gupta AK Indian J Biochem Biophys; 2011 Feb; 48(1):47-53. PubMed ID: 21469602 [TBL] [Abstract][Full Text] [Related]
18. Coleus Amboinicus Lour. Leaf Extract as an Antioxidant in Sepsis. Sari MI; Lia Kusumawati R; Pane YS; Sufitni S Med Arch; 2023; 77(6):451-454. PubMed ID: 38313107 [TBL] [Abstract][Full Text] [Related]
19. Differential response of quinoa genotypes to drought and foliage-applied H Iqbal H; Yaning C; Waqas M; Shareef M; Raza ST Ecotoxicol Environ Saf; 2018 Nov; 164():344-354. PubMed ID: 30130733 [TBL] [Abstract][Full Text] [Related]
20. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Chugh V; Kaur N; Grewal MS; Gupta AK Indian J Biochem Biophys; 2013 Apr; 50(2):150-8. PubMed ID: 23720889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]