These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34554739)

  • 1. Rapid Enrichment of Submicron Particles within a Spinning Droplet Driven by a Unidirectional Acoustic Transducer.
    Peng T; Fan C; Zhou M; Jiang F; Drummer D; Jiang B
    Anal Chem; 2021 Oct; 93(39):13293-13301. PubMed ID: 34554739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets.
    Peng T; Li L; Zhou M; Jiang F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells.
    Liu P; Tian Z; Hao N; Bachman H; Zhang P; Hu J; Huang TJ
    Lab Chip; 2020 Sep; 20(18):3399-3409. PubMed ID: 32779677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and stability investigation of a nozzle-free droplet-on-demand acoustic ejector.
    Ning Y; Zhang M; Zhang H; Duan X; Yuan Y; Liu B; Pang W
    Analyst; 2021 Sep; 146(18):5650-5657. PubMed ID: 34378558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles.
    Ugawa M; Lee H; Baasch T; Lee M; Kim S; Jeong O; Choi YH; Sohn D; Laurell T; Ota S; Lee S
    Analyst; 2022 Jan; 147(2):274-281. PubMed ID: 34889326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force.
    Park J; Destgeer G; Kim H; Cho Y; Sung HJ
    Lab Chip; 2018 Sep; 18(19):2936-2945. PubMed ID: 30140820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface acoustic wave concentration of particle and bioparticle suspensions.
    Li H; Friend JR; Yeo LY
    Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Pico-Liter Acoustic Droplet Ejection Based on High-Frequency Ultrasound Transducer.
    Liang S; Zhang Z; Wang X; Su M; Qiu W; Zheng H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2212-2218. PubMed ID: 33591916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of acoustophoretic manipulation of particles in microfluidic channels.
    Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
    Zhou Y; Ma Z; Ai Y
    Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the force and the position of acoustic traps with a tunable acoustofluidic chip: Application to spheroid manipulations.
    Jeger-Madiot N; Mousset X; Dupuis C; Rabiet L; Hoyos M; Peyrin JM; Aider JL
    J Acoust Soc Am; 2022 Jun; 151(6):4165. PubMed ID: 35778170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.
    Lee J; Jeong JS; Shung KK
    Ultrasonics; 2013 Jan; 53(1):249-54. PubMed ID: 22824623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.
    Chung IY; Lee J
    Ultrasonics; 2015 Feb; 56():220-6. PubMed ID: 25106111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers.
    Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustofluidic manipulation for submicron to nanoparticles.
    Wei W; Wang Z; Wang B; He X; Wang Y; Bai Y; Yang Q; Pang W; Duan X
    Electrophoresis; 2024 May; ():. PubMed ID: 38794970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.